LECTURE 2 Geometrical Properties of Rod Cross Sections (Part 2)

1 Moments of Inertia Transformation with Parallel Transfer of Axes.

Parallel-Axes Theorems

Fig. 1
Given: $A, a, b, I_{y_{c}}, I_{z_{c}}, I_{y_{c}} z_{c}$, where y_{c} and z_{c} are central axes, i.e. $S_{y_{c}}=S_{z_{c}}=0$.
y_{1} and z_{1} are axes parallel to the y_{c} and z_{c} axes. The distance between z_{1} and z_{c} axes is a and the distance between y_{1} and y_{c} axes is b.

Determine: the moments of inertia with respect to z_{1} and y_{1} axes.
By definition

$$
\begin{equation*}
I_{y_{1}}=\int_{A} z_{1}^{2} d A, \quad I_{z_{1}}=\int_{A} y_{1}^{2} d A, \quad I_{y_{1} z_{1}}=\int_{A} y_{1} z_{1} d A \tag{1}
\end{equation*}
$$

In Fig. 1 it is seen, that

$$
\begin{equation*}
z_{1}=z-b, \quad y_{1}=y-a . \tag{2}
\end{equation*}
$$

Substituting z_{1} and y_{1} from expressions (2) into formula (1), we find

$$
\begin{equation*}
I_{y_{1}}=\int_{A}(z-b)^{2} d A=\int_{A} z^{2} d A-2 b \int_{A} z d A+b^{2} \int_{A} d A \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
I_{z_{1}}=\int_{A}(y-a)^{2} d A=\int_{A} y^{2} d A-2 a \int_{A} y d A+a^{2} \int_{A} d A, \tag{4}\\
I_{y_{1} z_{1}}=\int_{A}(y-a)(z-b) d A=\int_{A} y z d A-a \int_{A} z d A-b \int_{A} y d A+a b \int_{A} d A . \tag{5}
\end{gather*}
$$

If z_{c} and y_{c} axes are central, then $S_{y_{c}}=S_{z_{c}}=0$ and obtained expressions are significantly simplified

$$
\begin{align*}
& I_{y_{1}}=I_{y_{c}}+b^{2} A, \\
& I_{z_{1}}=I_{z_{c}}+a^{2} A, \quad-\text { parallel-axes theorem. } \tag{6}\\
& I_{y_{1} z_{1}}=I_{y_{c} z_{c}}+a b A .
\end{align*}
$$

The moment of inertia of section with respect to an arbitrary axis in its plane is equal to the moment of inertia with respect to parallel centroidal axis plus the product of the area and the square of the distance between two axes.

The product of inertia of a section with respect to an arbitrary pair of axes in its plane is equal to the product of inertia with respect to parallel centroidal axes plus the product of a section area and the coordinates of the centroid with respect to the pair of axes.
It follows from the first two formulas of (6) that in the family of parallel axes the moment of inertia with respect to the central axis is a minimum.

While determining the product of inertia by formulas (6) it is necessary to take into account the signs of values a and b. They are centroid coordinates O in $z_{1} O y_{1}$ orthogonal system.

Fig. 2

Example 1 Determine axial moments of inertia and product of inertia for the right triangle relative to central axes which are parallel to triangle legs.
Given: $h, \quad b, \quad I_{y_{1}}=b h^{3} / 12, \quad I_{z_{1}}=h b^{3} / 12$, $I_{y_{1} z_{1}}=+b^{2} h^{2} / 24$ (they are found by integration)
Determine: $I_{y_{c}}, I_{z_{c}}, I_{y_{c} z_{c}}$.
Let us use the results of previous example and parallel axes transfer formulae.

In this case, the transfer from an arbitrary y_{1}, z_{1} axes to central $y_{c} z_{c}$ axes is necessary to perform:

$$
\begin{gathered}
I_{y_{c}}=I_{y_{1}}-\left(\frac{h}{3}\right)^{2} A, \\
I_{z_{c}}=I_{z_{1}}-\left(\frac{b}{3}\right)^{2} A, \\
I_{y_{c} z_{c}}=I_{y_{1} z_{1}}-\left(+\frac{h}{3}\right)\left(+\frac{b}{3}\right) A .
\end{gathered}
$$

Fig. 3

After substitutions and simplifications we get in result:

$$
I_{y_{c}} \stackrel{\Delta}{\Delta}=\frac{b h^{3}}{36}, \quad I_{z_{c}} \stackrel{\Delta}{=} \frac{h b^{3}}{36}, \quad I_{y_{c} z_{c}}^{\Delta}=-\frac{b^{2} h^{2}}{72} .
$$

Note: sign of the product $I_{y_{c}} z_{c}$ depends on orientation of the triangle relative to selected orthogonal system of coordinates.

Example 2 Calculate the product of inertia $I_{x_{c} y_{c}}$ of the Z-section shown in Fig 4.

Fig. 4

The section has width b, height h, and thickness t.
To obtain the product of inertia with respect to the x, y axes through the centroid, we divide the area into three parts and use the parallel-axis theorem. The parts are as follows: (1) a rectangle of width $b-t$ and thickness t in the upper flange, (2) a similar rectangle in the lower flange, and (3) a web rectangle with height h and thickness t.

The product of inertia of the web rectangle with respect to the x, y axes is zero (from symmetry).

The product of inertia $\left(I_{x y}\right)_{1}$ of the upper flange rectangle (with respect to the x_{c}, y_{c} axes) is determined by using the parallel-axis theorem:

$$
\left(I_{x y}\right)_{1}=I_{x_{c} y_{c}}+A d_{1} d_{2}
$$

in which $I_{x_{c} y_{c}}$ is the product of inertia of the rectangle with respect to its own centroid, A is the area of the rectangle, d_{1} is the x coordinate of the centroid of the rectangle, and d_{2} is the y coordinate of the centroid of the rectangle. Thus,

$$
I_{x_{c} y_{c}}=0, \quad A=(b-t) t, \quad d_{1}=\frac{h}{2}-\frac{t}{2}, \quad d_{2}=\frac{b}{2}
$$

and the product of inertia of the upper flange rectangle is

$$
\left(I_{x y}\right)_{1}=I_{x_{c} y_{c}}+A d_{1} d_{2}=0+t(b-t)\left(\frac{h}{2}-\frac{t}{2}\right)\left(\frac{b}{2}\right)=\frac{b t}{4}(h-t)(b-t)
$$

The product of inertia of the lower flange rectangle is the same. Therefore, the product of inertia of the entire Z-section is twice $\left(I_{x y}\right)_{1}$, or

$$
I_{x y}=\frac{b t}{2}(h-t)(b-t)
$$

Note: This product of inertia is positive because the flanges lie in the first and third quadrants.

Example 3 Determine centroidal axial moments of inertia of a parabolic

 semisegmentThe parabolic semisegment $O A B$ shown in Fig. 5 has base b and height h. Using the parallel-axis theorem, determine the moments of inertia $I_{x_{c}}$ and $I_{y_{c}}$ with respect to the centroidal axes x_{c} and y_{c}.

We can use the parallel-axis theorem (rather than integration) to find the centroidal moments of inertia because we already know the area A, the centroidal coordinates x_{c} and y_{c}, and the moments of inertia I_{x} and I_{y} with respect to the x and y axes. These quantities may be obtained by integration (see axial moment of inertia of a parabolic semisegment). They are repeated here:

Fig. 5

$$
\begin{gathered}
A=\frac{2 b h}{3}, \quad x_{c}=\frac{3 b}{8}, \quad y_{c}=\frac{2 h}{5} \\
I_{x}=\frac{16 b h^{3}}{105}, \quad I_{y}=\frac{2 h b^{3}}{15} .
\end{gathered}
$$

To obtain the moment of inertia with respect to the x_{c} axis, we write the parallel-axis theorem as follows:

$$
I_{x}=I_{x_{c}}+A y_{c}^{2}
$$

Therefore, the moment of inertia $I_{x_{c}}$ is

$$
I_{x_{c}}=I_{x}-A y_{c}^{2}=\frac{16 b h^{3}}{105}-\frac{2 b h}{3}\left(\frac{2 h}{5}\right)^{2}=\frac{8 b h^{3}}{175}
$$

In a similar manner, we obtain the moment of inertia with respect to the y_{c} axis:

$$
I_{y_{c}}=I_{y}-A x_{c}^{2}=\frac{2 h b^{3}}{15}-\frac{2 b h}{3}\left(\frac{3 b}{8}\right)^{2}=\frac{19 h b^{3}}{480}
$$

Example 4 Determine the moment of inertia $I_{x_{c}}$ with respect to the horizontal axis x_{c} through the centroid C of the beam cross section shown in Fig. 6.

Fig. 6

The position of the centroid C was determined previously and equals to $y_{c}=1.8 \mathrm{in}$.

Note: It will be clear from beam theory that axis x_{c} is the neutral axis for bending of this beam, and therefore the moment of inertia $I_{x_{c}}$ must be determined in order to calculate the stresses and deflections of this beam.

We will determine the moment of inertia $I_{x_{c}}$ with respect to axis x_{c} by applying the parallel-axis theorem to each individual part of the composite
area. The area is divided naturally into three parts: (1) the cover plate, (2) the wideflange section, and (3) the channel section. The following areas and centroidal distances were obtained previously:

$$
\begin{gathered}
A_{1}=3.0 \mathrm{in} .^{2}, \quad A_{2}=20.8 \mathrm{in}^{2}, \quad A_{3}=8.82 \mathrm{in} .^{2} \\
y_{1}=9.485 \mathrm{in} ., \quad y_{2}=0, \quad y_{3}=9.884 \mathrm{in} ., \quad y_{c}=1.80 \mathrm{in} .
\end{gathered}
$$

The moments of inertia of the three parts with respect to horizontal axes through their own centroids C_{1}, C_{2}, and C_{3} are as follows:

$$
\begin{gathered}
I_{1}=\frac{b h^{3}}{12}=\frac{1}{12}(6.0 \mathrm{in} .)(0.5 \mathrm{in} .)^{3}=0.063 \mathrm{in} .^{4} \\
I_{2}=1170 \mathrm{in} .^{4} ; \quad I_{3}=3.94 \mathrm{in} .
\end{gathered}
$$

Now we can use the parallel-axis theorem to calculate the moments of inertia about axis x_{c} for each of the three parts of the composite area:

$$
\begin{gathered}
I_{x_{c}}^{I}=I_{1}+A_{1}\left(y_{1}+y_{c}\right)^{2}=0.063 \mathrm{in}^{4}+\left(3.0 \mathrm{in}^{2}\right)(11.28 \mathrm{in} .)^{2}=382 \mathrm{in} .^{4} \\
I_{x_{c}}^{I I}=I_{2}+A_{2} y_{c}^{2}=1170 \mathrm{in}^{4}+\left(20.8 \mathrm{in}^{2}\right)(1.80 \mathrm{in} .)^{2}=1240 \mathrm{in} .^{4} \\
I_{x_{c}}^{I I I}=I_{3}+A_{3}\left(y_{3}-y_{c}\right)^{2}=3.94 \mathrm{in.}^{4}+\left(8.82 \mathrm{in}^{2}\right)(8.084 \mathrm{in} .)^{2}=580 \mathrm{in}^{4}{ }^{4}
\end{gathered}
$$

The sum of these individual moments of inertia gives the moment of inertia of the entire cross-sectional area about its centroidal axis x_{c} :

$$
I_{x_{c}}=I_{x_{c}}^{I}+I_{x_{c}}^{I I}+I_{x_{c}}^{I I I}=2200 \mathrm{in}^{4}
$$

2 Moments of Inertia Change and Coordinate Axes Rotating

Let us consider a cross section of a rod. Relate it to a system of coordinates $z_{1} O y_{1}$.

Isolate an element $d A$ from the area A with coordinates z, y. Let us consider that cross section's axial moments of inertia I_{y}, I_{z} and product of inertia $I_{y z}$ are given (Fig. 7):

Fig. 7

It is required to determine $I_{y}, I_{z}, I_{y z}$, i.e. the moments of inertia with respect to axes y_{1}, z_{1} rotated through an angle α in relation to system $y, z(\alpha>0$ i.e. counter clockwise rotation is chosen as positive).

It should be observed here that the point O is not the section centroid.

Using Fig.7, we find:

$$
\begin{equation*}
z_{1}=z \cos \alpha-y \sin \alpha, \quad y_{1}=y \cos \alpha+z \sin \alpha \tag{7}
\end{equation*}
$$

By definition

$$
\begin{equation*}
I_{y_{1}}=\int_{A} z_{1}^{2} d A, I_{z_{1}}=\int_{A} y_{1}^{2} d A, I_{y_{1} z_{1}}=\int_{A} z_{1} y_{1} d A \tag{8}
\end{equation*}
$$

Then

$$
\begin{gather*}
I_{y_{1}}=\int_{A}(z \cos \alpha-y \sin \alpha)^{2} d A=\cos ^{2} \alpha \int_{A} z^{2} d A- \\
-2 \sin \alpha \cos \alpha \int_{A} y z d A+\sin ^{2} \alpha \int_{A} y^{2} d A \tag{9}
\end{gather*}
$$

By similar way

$$
\begin{gather*}
I_{z_{1}}=\int_{A}(y \cos \alpha+z \sin \alpha)^{2} d A=\cos ^{2} \alpha \int_{A} y^{2} d A+ \\
+2 \sin \alpha \cos \alpha \int_{A} y z d A+\sin ^{2} \alpha \int_{A} z^{2} d A, \tag{10}\\
I_{y_{1} z_{1}}=\int_{A}(z \cos \alpha-y \sin \alpha)(y \cos \alpha+z \sin \alpha) d A= \\
=\cos ^{2} \alpha \int_{A} y z d A-\sin ^{2} \alpha \int_{A} y z d A-\sin \alpha \cos \alpha \int_{A} y^{2} d A+\sin \alpha \cos \alpha \int_{A}^{2} z^{2} d A= \\
=\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right) \int_{A} y x d A+2 \sin \alpha \cos \alpha \frac{\int_{A}^{2} z^{2} d A-\int_{A} y^{2} d A}{2} . \tag{11}
\end{gather*}
$$

Using moment of inertia definition and the formula $\cos ^{2} \alpha-\sin ^{2} \alpha=\cos 2 \alpha$ and $2 \sin \alpha \cos \alpha=\sin 2 \alpha$, we may write, that

$$
\begin{align*}
& I_{y_{1}}=I_{y} \cos ^{2} \alpha-I_{y z} \sin 2 \alpha+I_{z} \sin ^{2} \alpha, \\
& I_{z_{1}}=I_{z} \cos ^{2} \alpha+I_{y z} \sin 2 \alpha+I_{y} \sin ^{2} \alpha, \tag{12}\\
& I_{y_{1} z_{1}}=I_{y z} \cos 2 \alpha+\frac{I_{y}-I_{z}}{2} \sin 2 \alpha .
\end{align*}
$$

We note that functions $(9,10,11)$ are periodic with a period π. The axial moments of inertia are positive. They can be minimum or maximum but simultaneously, at the same angle α_{p}. The product of inertia changes its sign in rotation axes.

3 Sum of Axial Moments of Inertia

It is evident, that

$$
\begin{gather*}
I_{y_{1}}+I_{z_{1}}=I_{y} \cos ^{2} \alpha+I_{z} \sin ^{2} \alpha-I_{y z} \sin 2 \alpha+I_{y} \sin ^{2} \alpha+ \\
+I_{z} \cos ^{2} \alpha+I_{y z} \sin 2 \alpha=I_{y}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)+I_{z}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right) \tag{13}
\end{gather*}
$$

Thus the sum of the axial moments of inertia with respect to two mutually perpendicular axes depends on the angle of rotation and remains constant when the axes are rotated.

Note, that

$$
\begin{equation*}
y^{2}+z^{2}=\rho^{2} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{A}\left(y^{2}+z^{2}\right) d A=\int_{A} \rho^{2} d A \tag{15}
\end{equation*}
$$

where ρ is the distance from the origin to the element of area.
Thus

$$
\begin{equation*}
I_{y}+I_{z}=I_{\rho}, \tag{16}
\end{equation*}
$$

where I_{ρ} is the familiar polar moment of inertia.

4 Principal Axes. Principal Central Axes. Principal Moments of Inertia

Each of the quantities $I_{y_{1}}$ and $I_{z_{1}}$ changes with the axis α rotation angle, but their sum remains unchanged. Consequently there exists an angle α_{p} at which one of moments of inertia attains its maximum value while the other assumes a minimum value.

Differentiating the expression for $I_{y_{1}}$ (9) with respect to α and equating the derivative to zero, we find

$$
\begin{gather*}
\frac{d I_{y 1}}{d \alpha}=2 I \cos \alpha_{p} \sin \alpha_{p}-2 I_{y z} \cos 2 \alpha_{p}+2 I_{Z} \cos \alpha_{p} \sin \alpha_{p}=0 \\
\left(I_{z}-I_{y}\right) \sin 2 \alpha_{p}=2 I_{y z} \cos 2 \alpha_{p} \tag{17}\\
\tan 2 \alpha_{p}=\frac{2 I_{y z}}{I_{z}-I_{y}}
\end{gather*}
$$

For this value of the angle α_{p}, one of axial moments is maximum and the other one is minimum.

If $\tan 2 \alpha_{p}>0$, then axes should be rotated counter clockwise.
For the same angle α_{p}, the product of inertia vanishes:

$$
\begin{equation*}
I_{y_{1} z_{1}}=\frac{I_{z}-I_{y}}{2} \sin 2 \alpha_{p}+\frac{I_{y}-I_{z}}{2} \sin 2 \alpha_{p} \equiv 0 . \tag{18}
\end{equation*}
$$

Axes, with respect to which the product of inertia is zero and the axial moments takes extremal values, are called principal axes.
If, in addition, they are central, such axes called principal central axes.
The axial moments of inertia with respect to principal axes are called principal moments of inertia.

Principal moments of inertia are determined by using the following formulas:

$$
I_{\min }=\frac{I_{z}+I_{y}}{2} \pm\left(\frac{I_{z}-I_{y}}{2} \frac{I_{z}-I_{y}}{\sqrt{\left(I_{z}-I_{y}\right)^{2}+4 I_{y z}^{2}}}+\frac{2 I_{y z}^{2}}{\sqrt{\left(I_{z}-I_{y}\right)^{2}+4 I_{y z}^{2}}}\right)
$$

$$
\begin{equation*}
I_{\operatorname{mix}}=\frac{I_{z}+I_{y}}{2} \pm \frac{1}{2} \sqrt{\left(I_{z}-I_{y}\right)^{2}+4 I_{y z}^{2}} \tag{19}
\end{equation*}
$$

The upper sign corresponds to the maximal moment of inertia and the lower one - to the minimal moment.

Fig. 8

If section has an axis of symmetry, this axis is by all means the principal one. It means that sectional parts, lying on different sides of the axis, and products of inertia are equal, but have opposite signs. Consequently, $I_{y z}=0$ and y and z axes are principal

$$
I_{y z}^{\triangle}=\sum_{i=1}^{2} I_{y z}^{\triangle}=0
$$

Example 5 Determine the orientations of the principal centroidal axes and the magnitudes of the principal centroidal moments of inertia for the crosssectional area of the Z-section shown in Fig. 9.

Given: Use the following numerical data: height $h=200 \mathrm{~mm}$, width $b=90 \mathrm{~mm}$, and thickness $t=15 \mathrm{~mm}$.

Let us use the x_{c}, y_{c} axes as the reference axes through the centroid C. The moments and product of inertia with respect to these axes can be obtained by dividing the area into three rectangles and using the parallel-axis theorems. The results of such calculations are as follows:

$$
I_{x_{c}}=29.29 \times 10^{6} \mathrm{~mm}^{4}, \quad I_{y c}=6.667 \times 10^{6} \mathrm{~mm}^{4}, I_{x_{c} y_{c}}=-9.366 \times 10^{6} \mathrm{~mm}^{4} .
$$

Substituting these values into the equation for the angle θ_{p} Eq. (17), we get

$$
\tan 2 \theta_{p}=-\frac{2 I_{x y}}{I_{x}-I_{y}}=0.7930,2 \theta_{p}=38.4^{\circ} \text { and } 218.4^{\circ}
$$

Thus, the two values of θ_{p} are

$$
\theta_{p}=19.2^{\circ} \text { and } 109.2^{\circ}
$$

Using these values of θ_{p} in the transformation equation for $I_{x_{1}}$

$$
\begin{equation*}
I_{x_{1}}=\frac{I_{x}+I_{y}}{2}+\frac{I_{x}-I_{y}}{2} \cos 2 \theta_{p}-I_{x y} \sin 2 \theta_{p} \tag{20}
\end{equation*}
$$

we find $I_{x_{1}}=32.6 \times 10^{6} \mathrm{~mm}^{4}$ and $I_{x_{1}}=2.4 \times 10^{6} \mathrm{~mm}^{4}$, respectively. The same values are obtained if we substitute into equations:

Fig. 9

$$
\begin{align*}
& I_{U}=I_{\max }=\frac{I_{x}+I_{y}}{2}+\sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)^{2}+I_{x y}^{2}} \tag{21}\\
& I_{V}=I_{\min }=\frac{I_{x}+I_{y}}{2}-\sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)^{2}+I_{x y}^{2}}
\end{align*}
$$

Thus, the principal moments of inertia and the angles to the corresponding principal axes are:

$$
\begin{array}{lc}
I_{U}=32.6 \times 10^{6} \mathrm{~mm}^{4}, & \theta_{p_{1}}=19.2^{\circ} \\
I_{V}=2.4 \times 10^{6} \mathrm{~mm}^{4}, & \theta_{p_{2}}=109.2^{\circ}
\end{array}
$$

The principal axes are shown in Fig. 9 as the U, V axes.
Example 6 Determine the orientations of the principal centroidal axes and the magnitudes of the principal centroidal moments of inertia for the crosssectional area shown in Fig. 10. Use the following numerical data (see table).

Fig. 10

Parts of the composite area									$h_{i}, \mathrm{~m}$	$b_{i}, \mathrm{~m}$	$A_{i}, \mathrm{~m}^{2}$	$I_{x_{i}}, \mathrm{~m}^{2}$	$I_{y_{i}}, \mathrm{~m}^{4}$	$I_{x_{i} y_{i}}, \mathrm{~m}^{4}$	$y_{0}, \mathrm{~m}$
	0.2	0.1	26.8×10^{-4}	115×10^{-8}	1840×10^{-8}	0	-								
$2-$ П	0.16	0.16	31.4×10^{-4}	774×10^{-8}	774×10^{-8}	-445×10^{-8}	4.3×10^{-2}								

The coordinates of angular section centroid C_{2} are known from assortment $\left(x_{0}=y_{0}=4.3 \times 10^{-2} \mathrm{~m}\right)$.

The coordinates of the centroid C are determined beforehand and equals to:

$$
\begin{gathered}
x_{c}=-7.715 \times 10^{-2} \mathrm{~m} \\
y_{c}=3.615 \times 10^{-2} \mathrm{~m}
\end{gathered}
$$

Note: the first element (I-beam) was chosen as original in this calculation.
Let us use the x_{c}, y_{c} axes as the reference axes through the centroid C. The moments and product of inertia with respect to these axes can be obtained using the parallel-axis theorems. The results of such calculations are as follows.

$$
\begin{align*}
& I_{x_{c}}^{H}=I_{x_{c}}+I \neg, \tag{22}\\
& I_{x_{c}} \stackrel{\mathrm{H}}{=} I_{x_{1}} \stackrel{\mathrm{H}}{+} c_{1}^{2} A_{1}=115 \times 10^{-8}+3.615^{2} \times 26.8 \cdot 10^{-8}=465.23 \times 10^{-8} \mathrm{~m}^{4}, \\
& I \neg=I \neg{ }_{x_{c}}+c_{2}^{2} A_{2}=774 \times 10^{-8}+3.085^{2} \times 31.4 \times 10^{-8}=1072.8 \times 10^{-8} \mathrm{~m}^{4}, \\
& I_{x_{c}}=(465.23+1072.8) \times 10^{-8}=1538 \times 10^{-8} \mathrm{~m}^{4}, \\
& I_{y_{c}}^{H}=I_{y_{c}}+I_{y_{c}}, \tag{23}\\
& I_{y_{c}} \stackrel{\vdash}{=} y_{y_{1}}+\stackrel{-}{a}_{1}^{2} A_{1}=1840 \times 10^{-8}+7.715^{2} \times 26.8 \times 10^{-8}=3435.2 \times 10^{-8} \mathrm{~m}^{4}, \\
& I \neg=I \neg+a_{y_{c}}^{2} A_{2}=774 \times 10^{-8}+6.585^{2} \times 31.4 \times 10^{-8}=2135.6 \times 10^{-8} \mathrm{~m}^{4}, \\
& I_{y_{c}}=(3435.2+2135.6) \times 10^{-8}=5570.8 \times 10^{-8} \mathrm{~m}^{4},
\end{align*}
$$

$$
\begin{gathered}
I_{x_{c} y_{c}}^{\stackrel{\mathrm{H}}{2}}=I_{x_{c} y_{c}}+I_{x_{c} y_{c}}^{\neg} \\
I_{x_{c} y_{c}} \stackrel{H}{=} I_{x_{1} y_{1}} \stackrel{\mathrm{H}}{+} a_{1} c_{1} A_{1}=0+7.715(-3.615) \times 10^{-4} \times 26.8 \times 10^{-4}=-747.4 \times 10^{-8} \mathrm{~m}^{4}, \\
I_{x_{c} y_{c}}=I_{x_{2} y_{2}}+a_{2} c_{2} A_{2} .
\end{gathered}
$$

In last equation the product of inertia $I_{y_{2} z_{2}}$ is unknown. Let's determine it using Fig. 11. Note, that y_{3}, z_{3} axes are really principal axes of the section enertia since y_{3} is the axis of its simmetry. The values of principal central moments of inertia of the angle are specified in assortment. Let us select these values:

Fig. 11

$$
\begin{aligned}
I_{y_{3}}^{\neg} & =I_{\max }^{\neg}=1229 \times 10^{-8} \mathrm{~m}^{4} \\
I_{z_{3}}^{\neg} & =I_{\min }^{\neg}=319 \times 10^{-8} \mathrm{~m}^{4}
\end{aligned}
$$

Note: If in assortment only one of these two values is specified, the second one may be calculated using the fact that the sum of two axial moments of inertia is unchanged in axes rotation:

$$
\begin{equation*}
I_{\max }^{\neg}+I_{\min }^{\neg}=I \neg+I \neg \tag{25}
\end{equation*}
$$

It is also evident, that $I_{y_{3} z_{3}}^{\neg} \equiv 0$.
Applying rotational formula for product of inertia we find

$$
\begin{gathered}
I \neg y_{y_{2}}=I \neg y_{y_{3} z_{3}}^{\neg} \cos 2 \alpha_{1}+\frac{I \neg-I \neg}{2}-I z_{3} \\
\sin 2 \alpha_{1}=0+\frac{I_{\max }^{\neg}-I_{\min }^{\neg}}{2} \sin \left(-90^{\circ}\right)= \\
=\frac{1229-319}{2} 10^{-8}(-1)=-455 \times 10^{-8} \mathrm{~m}^{4}
\end{gathered}
$$

Consequently

$$
I_{x_{c} y_{c}}^{\neg}=-455 \times 10^{-8}+(-6.585) 3.085 \times 31.4 \times 10^{-8}=-1092.9 \times 10^{-8} \mathrm{~m}^{4}
$$

After substitutions the result is

$$
I_{x_{c} y_{c}}=(-747.4-1092.9) 10^{-8}=-1840.3 \times 10^{-8} \mathrm{~m}^{4} .
$$

Substituting these values into the equation for the angle θ_{p}, we get

$$
\operatorname{tg} 2 \theta_{p}=\frac{2 I_{x_{c} y_{c}}}{I_{y_{c}}-I_{x_{c}}}=\frac{-2 \times 1840.3}{5570.8-1538}=-0.9127 \Rightarrow 2 \theta_{p}=-42^{\circ} 24^{\prime} \Rightarrow \theta_{p}=-21^{\circ} 12^{\prime} .
$$

The principal moments of inertia are

$$
\begin{aligned}
I_{V}=I_{\min } & =\frac{I_{x_{c}}+I_{y_{c}}}{2} \pm \sqrt{\left(\frac{I_{x_{c}}-I_{y_{c}}}{2}\right)^{2}+I_{x_{c} y_{c}}^{2}}=(3554.4 \pm 2293.2) 10^{-8} \mathrm{~m}^{4}, \\
I_{U} & =I_{\max }=5847.6 \times 10^{-8} \mathrm{~m}^{4}, \quad I_{V}=I_{\min }=1261.2 \times 10^{-8} \mathrm{~m}^{4} .
\end{aligned}
$$

Checking the results:
a) $\quad I_{\max }>I_{y_{c}}>I_{x_{c}}>I_{\text {min }}$,

$$
5847.6 \times 10^{-8}>5570.8 \times 10^{-8}>1538 \times 10^{-8}>1261.2 \times 10^{-8}
$$

b) $\quad I_{\max }+I_{\text {min }}=I_{x_{c}}+I_{y_{c}}$,

$$
5847.6 \times 10^{-8}+1261.2 \times 10^{-8}=5570.8 \times 10^{-8}+1538 \times 10^{-8},
$$

$$
\left(7108.8 \times 10^{-8}=7108.8 \times 10^{-8}\right)
$$

c) $\quad I_{U V}=I_{x_{c} y_{c}} \cos 2 \theta_{p}+\frac{I_{y_{c}}-I_{z_{c}}}{2} \sin 2 \theta_{p}=$
$=\left[-1804.3 \times 0.7384+\frac{1538-5570.8}{2} \times(-0.6743)\right] \times 10^{-8}=(-1358.9+1359) \times 10^{-8} \mathrm{~m}^{4} \cong 0$.

5 Example of home problem

National aerospace university
"Kharkiv Aviation Institute" Department of aircraft strength
Subject: mechanics of materials
Document: home problem
Topic: Internal Forces in Multispan Beams.
Full name of the student, group
Variant: $1 \quad$ Complexity: 1

Given: $q=10 \mathrm{kN} / \mathrm{m} ; P=20 \mathrm{kN} ; M=10 \mathrm{kNm} ; a=3 \mathrm{~m}$.
Goal:

1) open static indeterminacy using the equation of three moments and draw the graphs $Q_{z}(x), M_{y}(x)$.

Full name of the lecturer
signature

Mark: \square

Solution

1. Use the following numerical data (see Table) and draw the section in scale (Fig. 1).

Fig. 1

Table

	Geometrical properties								
Parts of the composite area	$\begin{aligned} & h_{i}, \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & b_{i}, \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & A_{i}, \\ & \mathrm{~m}^{2} \end{aligned}$	$\begin{aligned} & I_{x_{i}}, \\ & \mathrm{~m}^{4} \end{aligned}$	$\begin{aligned} & I_{y_{i}}, \\ & \mathrm{~m}^{4} \end{aligned}$	$\begin{aligned} & I_{x_{i} y_{i}} \\ & \mathrm{~m}^{4} \end{aligned}$	$\begin{aligned} & I_{\max _{i}} \\ & \mathrm{~m}^{4} \end{aligned}$	$\begin{aligned} & I_{\min _{i}} \\ & \mathrm{~m}^{4} \end{aligned}$	$\begin{aligned} & y_{0}, \\ & m \end{aligned}$
$\begin{aligned} & 1-\underset{\text { GOST 8239-72 }}{ } \\ & \text { lin } \end{aligned}$	0.2	0.1	26.8×10^{-4}	115×10^{-8}	1840×10^{-8}	0	1840×10^{-8}	115×10^{-8}	-
$\begin{aligned} & 2-\quad 7 \\ & \text { GOST 8509-72 } \end{aligned}$	0.16	0.16	31.4×10^{-4}	774×10^{-8}	774×10^{-8}	-	1229×10^{-8}	319×10^{-8}	4.3×10^{-2}

The coordinates of two C_{1} and C_{2} centroids for the parts are known from assortments $\left(x_{0}=y_{0}=4.3 \times 10^{-2} \mathrm{~m}\right)$.
2. Calculation of the centroidal coordinates for composite area.

Axes x_{1}, y_{1} are selected as reference axes in this study (see Fig. 1).
The following formulae are used

$$
\begin{gathered}
x_{c}=S_{y_{1}} / A, \quad y_{c}=S_{x_{1}} / A, \quad \text { where } \\
S_{y_{1}}=S_{y_{1}}+\stackrel{+}{S} S_{y_{1}} ; \quad S_{x_{1}}=S_{x_{1}}+\stackrel{H}{S}_{x_{1}} . \\
A=A+A^{\stackrel{H}{\neg}}=26.8 \times 10^{-4}+31.4 \times 10^{-4}=58.2 \times 10^{-4} \mathrm{~m}^{2} .
\end{gathered}
$$

$S_{x_{1}}^{\mathrm{H}}$ and $S_{y_{1}}^{\mathrm{H}}$ are zero due to central character of x_{1}, y_{1} axes for I-beam.

$$
\begin{gathered}
S_{x_{1}}=A \neg\left(+\left(b_{2}-\frac{b_{1}}{2}-y_{0}\right)\right)=31.4 \times 10^{-4}(+(0.16-0.05-0.043))=31.4 \times 10^{-4} \times 0.067= \\
=+2.10 \times 10^{-4} \mathrm{~m}^{3} \\
S_{y_{1}}=A \neg\left(-\left(\frac{h_{1}}{2}+x_{0}\right)\right)=31.4 \times 10^{-4}(-(0.1+0.043))=-4.49 \times 10^{-4} \mathrm{~m}^{3} \\
S_{y_{1}}=0-4.49 \times 10^{-4}=-4.49 \times 10^{-4} \mathrm{~m}^{3} \\
S_{x_{1}}=0+2.10 \times 10^{-4}=+2.10 \times 10^{-4} \mathrm{~m}^{3} \\
x_{c}=-4.49 \times 10^{-4} / 58.2 \times 10^{-4}=-0.077 \mathrm{~m}=-7.715 \mathrm{~cm} \\
y_{c}=+2.10 \times 10^{-4} / 58.2 \times 10^{-4}=+0.03615 \mathrm{~m}=+3.615 \mathrm{~cm}
\end{gathered}
$$

Results: the coordinates of the C centroid are equal to:

$$
\begin{gathered}
x_{c}=-7.715 \times 10^{-2} \mathrm{~m} \\
y_{c}=3.615 \times 10^{-2} \mathrm{~m}
\end{gathered}
$$

They are shown on Fig. 1.
3. Calculation of central moments of inertia relative to central x_{c}, y_{c} axes.

Let us denote the x_{c}, y_{c} axes as the centroidal axes of the composite area. The moments and product of inertia with respect to these axes can be obtained using the parallel-axis theorems. The results of such calculations are as follows.

$$
\begin{gathered}
I_{x_{c}}=I_{x_{c}}^{-1}+I_{x_{c}}^{\neg}, \\
I_{x_{c}}=I_{x_{1}}^{\prime}+c_{1}^{2} A_{1}=115 \times 10^{-8}+3.615^{2} \times 26.8 \times 10^{-8}=465.23 \times 10^{-8} \mathrm{~m}^{4}, \\
I_{x_{c}}^{\neg}=I_{x_{2}}^{\neg}+c_{2}^{2} A_{2}=774 \times 10^{-8}+3.085^{2} \times 31.4 \times 10^{-8}=1072.8 \times 10^{-8} \mathrm{~m}^{4}, \\
I_{x_{c}}=(465.23+1072.8) 10^{-8}=1538 \times 10^{-8} \mathrm{~m}^{4} . \\
I_{y_{c}}=I_{y_{c}}^{-1}+I_{y_{c}}^{\urcorner}, \\
I_{y_{c}}^{H}=I_{y_{1}}^{H}+a_{1}^{2} A_{1}=1840 \times 10^{-8}+7.715^{2} \times 26.8 \times 10^{-8}=3435.2 \times 10^{-8} \mathrm{~m}^{4}, \\
I_{y_{c}}^{\neg}=I_{y_{2}}+a_{2}^{2} A_{2}=774 \times 10^{-8}+6.585^{2} \times 31.4 \times 10^{-8}=2135.6 \times 10^{-8} \mathrm{~m}^{4}, \\
I_{y_{c}}=(3435.2+2135.6) 10^{-8}=5570.8 \times 10^{-8} \mathrm{~m}^{4} .
\end{gathered}
$$

4. Calculation of the product of inertia relative to x_{c}, y_{c} axes.

$$
I_{x_{c} y_{c}}=I_{x_{c} y_{c}}{ }^{\mathrm{H}}+I_{x_{c} y_{c}}^{\urcorner} \text {, }
$$

For the first part of the section:

$$
I_{x_{c} y_{c}}^{H-1}=I_{x_{1} y_{1}}^{H}+a_{1} c_{1} A_{1}=0+7.715(-3.615) \times 10^{-4} \times 26.8 \times 10^{-4}=-747.4 \times 10^{-8} \mathrm{~m}^{4} .
$$

For second part the similar approach is used:

$$
I_{x_{c} y_{c}}^{\urcorner}=I_{x_{2} y_{2}}^{\urcorner}+a_{2} c_{2} A_{2}
$$

The value of $I_{x_{2} y_{2}}^{\urcorner}$should be determined beforehand using transformation equations for product of inertia and taking into account that in rotation of axes the sum of axial moments of inertia is unchanged, i.e. $I_{x_{2}}+I_{y_{2}}=I_{\max }+I_{\text {min }}$. The axes rotating procedure is shown in Fig. 2. The x_{3}, y_{3} axes are selected as reference axes in this rotation to x_{2}, y_{2} axes. Due to cross-

Fig. 2 section symmetry relative to x_{3} axis, the angle of rotation is $\theta_{p}=-45^{\circ}$ (clockwise rotation). In our case, general view of transformation equation for product of inertia

$$
I_{x_{1} y_{1}}=\frac{I_{x}-I_{y}}{2} \sin 2 \theta+I_{x y} \cos 2 \theta
$$

will be rewritten as

$$
I_{x_{2} y_{2}}=\frac{I_{x_{3}}-I_{y_{3}}}{2} \sin 2 \theta_{p}+I_{x_{3} y_{3}} \cos 2 \theta_{p} .
$$

After substituting,

$$
I_{x_{2} y_{2}}=\frac{1229 \times 10^{-8}-319 \times 10^{-8}}{2} \sin \left(-90^{\circ}\right)+0 \cos \left(-90^{\circ}\right)=-455 \times 10^{-8} \mathrm{~m}^{4}
$$

In our designations, this product will be denoted as $I_{x_{2} y_{2}}^{\urcorner}=-455 \times 10^{-8} \mathrm{~m}^{4}$.
Consequently,

$$
I_{x_{c} y_{c}}^{\urcorner}=-455 \times 10^{-8}+(-6.585)(3.085) \times 31.4 \times 10^{-8}=-1092.9 \times 10^{-8} \mathrm{~m}^{4} .
$$

Total result after substitutions is

$$
I_{x_{c} y_{c}}=(-747.4-1092.9) \times 10^{-8}=-1840.3 \times 10^{-8} \mathrm{~m}^{4} .
$$

5. Rotating central x_{c}, y_{c} axes to central principal position at θ_{p} angle.

Substituting the values of central moments and product of inertia into the equation for the angle θ_{p}, we get

$$
\operatorname{tg} 2 \theta_{p}=\frac{2 I_{x_{c} y_{c}}}{I_{y_{c}}-I_{x_{c}}}=\frac{2 \times(-1840.3)}{5570.8-1538}=-0.9127 \Rightarrow 2 \theta_{p}=-42^{\circ} 24^{\prime} \Rightarrow \theta_{p}=-21^{\circ} 12^{\prime}
$$

Note, that this angle is clockwise due to used sign convention. It is shown in resultant picture shown below (Fig. 3).
It is important to note that in any rotation of axes to principal position larger of two axial moments of inertia ($I_{y_{c}}=5570.8 \mathrm{~cm}^{4}$) becomes the largest (maximum) and smaller one ($I_{y_{c}}=1538 \mathrm{~cm}^{4}$) becomes the minimum in value.
6. Calculation of principal central moments of inertia for composite area.

The principal moments of inertia are determined using the formula

$$
\begin{gathered}
I_{U V}=I_{\min }=\frac{I_{x_{c}}+I_{y_{c}}}{2} \pm \sqrt{\left(\frac{I_{x_{c}}-I_{y_{c}}}{2}\right)^{2}+I_{x_{c} y_{c}}^{2}}=(3554.4 \pm 2293.2) \times 10^{-8} \mathrm{~m}^{4}, \\
I_{U}=I_{\max }=5847.6 \times 10^{-8} \mathrm{~m}^{4}, \quad I_{V}=I_{\min }=1261.2 \times 10^{-8} \mathrm{~m}^{4} .
\end{gathered}
$$

Note, both values must be positive!

7. Checking the results:
(a) Checking the correspondence: $I_{\max }>I_{y_{c}}>I_{x_{c}}>I_{\min }$ (in the case $I_{y_{c}}>I_{x_{c}}$) or

$$
I_{\max }>I_{x_{c}}>I_{y_{c}}>I_{\min }\left(\text { in the case } I_{x_{c}}>I_{y_{c}}\right) .
$$

In our case, $\quad 5847.6 \times 10^{-8}>5570.8 \times 10^{-8}>1538 \times 10^{-8}>1261.2 \times 10^{-8}$.
(b) Checking the constancy of the sum of axial moments of inertia in rotating the axes:

$$
\begin{gathered}
I_{\max }+I_{\min }=I_{x_{c}}+I_{y_{c}}, \rightarrow \\
5847.6 \times 10^{-8}+1261.2 \times 10^{-8}=5570.8 \times 10^{-8}+1538 \times 10^{-8} \\
\left(7108.8 \times 10^{-8}=7108.8 \times 10^{-8}\right)
\end{gathered}
$$

(c) Calculating the evidently zero central principal product of inertia of the section:

$$
\begin{gathered}
I_{U V}=I_{x_{c} y_{c}} \cos 2 \theta_{p}+\frac{I_{y_{c}}-I_{z_{c}}}{2} \sin 2 \theta_{p}= \\
=\left[(-1804.3) \times 0.7384+\frac{1538-5570.8}{2} \times(-0.6743)\right] \times 10^{-8}=(-1358.9+1359) \times 10^{-8} \mathrm{~m}^{4} \cong 0
\end{gathered}
$$

