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LECTURE 2 Geometrical Properties of Rod Cross Sections (Part 2)

1 Moments of Inertia Transformation with Parallel Transfer of Axes.
Parallel-Axes Theorems

\ A Z]

Fig. 1

Given: A, a, b, 1y, Iz, ly . where y, and z; are central axes, i.e.

y; and z; are axes parallel to the y. and z. axes. The distance between z; and z. axes

is a and the distance between y; and y. axesisb.

Determine: the moments of inertia with respect to z; and y; axes.

By definition
2 2
ly, = [z{dA, 1, = [y{dA 1, =[yz1dA. (1)
A A A
In Fig.1 it is seen, that
zn=z-b, y=y-a. (2)
Substituting z; and y; from expressions (2) into formula (1), we find
2 2 2
ly, = [(z-b) dA=[2°dA-2b[ zdA+b* [ dA, (3)
A A A A
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2 V. DEMENKO  MECHANICS OF MATERIALS 2020

|z1=f(y—a)ZdAzijdA—ZajydA+a2jdA, (4)
A A A A
iz = [(y—a)(z—b)dA=[yzdA—a|zdA—b[ ydA+ab[dA. (5)
A A A A A

If z; and y, axes are central, then Sy =S, =0 and obtained expressions are
significantly simplified

y =y, +b%A
IZl = IZC +a%A, — parallel-axes theorem. (6)
ly,z = lyez, + abA.

The moment of inertia of section with respect to an arbitrary axis in its plane is
equal to the moment of inertia with respect to parallel centroidal axis plus the
product of the area and the square of the distance between two axes.

The product of inertia of a section with respect to an arbitrary pair of axes in
its plane is equal to the product of inertia with respect to parallel centroidal axes plus
the product of a section area and the coordinates of the centroid with respect to the
pair of axes.

It follows from the first two formulas of (6) that in the family of parallel axes the

moment of inertia with respect to the central axis is a minimum.

While determining the product of inertia by formulas (6) it is necessary to take
into account the signs of values a and b. They are centroid coordinates O in z;0y;

orthogonal system.

ZIp AP Example 1 Determine axial moments of
inertia and product of inertia for the right
triangle relative to central axes which are
parallel to triangle legs.

h : . _ hRh3 — hh3
Given: h, b, Iyl_bh /12, Izl_hb /12,
5 Je
i o > ly,z, =+b°h?/24  (they are found by
J 3 integration)
o b3l "y Determine: 1y 17, 1y 7 .

Let us use the results of previous example and

Fig. 2 parallel axes transfer formulae.
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In this case, the transfer from an arbitrary y;,

Ze \/\ Ze
71 axes to central y.z. axes is necessary to @ @
perform: Ve \ e
| N
2
Ye Y1 3 '
o2 Vo /yc
<A O\ / &
h b
IyCZC - Ilel —(4‘5 (-ngA
. . cpe L Fig. 3
After substitutions and simplifications we get
in result:
b ph3 b hp3 b b%h?
Ye T 36’ & 36’ Ve 72
N

Note: sign of the product Iy ;

selected orthogonal system

. depends on orientation of the triangle relative to

of coordinates.

Example 2 Calculate the product of inertia Ichc of the Z-section shown

in Fig 4.
The section has width b, height h, and thickness t.
i yj“ b To obtain the product of inertia with respect to the
Ly A X, y axes through the centroid, we divide the area
T A hinto three parts and use the parallel-axis theorem.
2 The parts are as follows: (1) a rectangle of width
C 4, ¥ x, b—t and thickness t in the upper flange, (2) a
4 4 g i h similar rectangle in the lower flange, and (3) a
l \\ | '2 web rectangle with height h and thickness t.
T B b The product of inertia of the web rectangle with

Fig. 4

respect to the x, y axes is zero (from symmetry).

10/12/2020 4:30:14 PM W:\+MEXAHUKA MATEPUANOB W\++HMK[] AHIM082 LECTURES 2020\02 Geometrical Properties of Rod Cross Sections (Part 2).doc



4 V. DEMENKO  MECHANICS OF MATERIALS 2020

The product of inertia (IXy )1 of the upper flange rectangle (with respect to the x., Y.

axes) is determined by using the parallel-axis theorem:

(lxy)l = |chc + Adldz,

in which Ichc Is the product of inertia of the rectangle with respect to its own centroid,

A is the area of the rectangle, d; is the x coordinate of the centroid of the rectangle, and

d, is the y coordinate of the centroid of the rectangle. Thus,

~0, A=(b-0t, d-n-Lt g,-2

I = ,
2 2

XcYe

and the product of inertia of the upper flange rectangle is

(g1 = Iy, +Adydy :ou@-g(%-%)(%j:%(h—t)(b—t).

The product of inertia of the lower flange rectangle is the same. Therefore, the product

of inertia of the entire Z-section is twice (Ixy )1, or

Ly :%(h —t)(b-t).
Note: This product of inertia is positive because the flanges lie in the first and third
quadrants.
Example 3 Determine centroidal axial moments of inertia of a parabolic
semisegment
The parabolic semisegment OAB shown in Fig. 5 has base b and height h. Using the

parallel-axis theorem, determine the moments of inertia I, and Iy with respect to the

centroidal axes x. and ;.

We can use the parallel-axis theorem (rather than integration) to find the centroidal

moments of inertia because we already know the area A, the centroidal coordinates X;

and Y., and the moments of inertia I, and ly with respect to the x and y axes. These

quantities may be obtained by integration (see axial moment of inertia of a parabolic

semisegment). They are repeated here:
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T~ _ 16bh3 _ 2hb3

\ =05 V=15
- e >
h _ To obtain the moment of inertia with

¥, ‘ respect to the Xx; axis, we write the
B
Y Y - .
0 b x  parallel-axis theorem as follows:
_ _ 2
Fig. 5 Iy =1Ix, + AYc.

Therefore, the moment of inertia Iy is

I, =1 —Ayzzm_z_bh(z_h)Z:Sth
Xe X c 105 3 5 175 .

In a similar manner, we obtain the moment of inertia with respect to the y. axis:

ly, = y—AXEZLb?’_Z_bh(&)Z_l%bP’

Ye — 15 318/ 480 °

Example 4 Determine the moment of inertia I, with respect to the

horizontal axis X; through the centroid C of the beam cross section shown

in Fig. 6.
V. The position of the centroid C was
Plate 6 in x% in G determined previously and equals to y. =1.8in.
CC—~—3J 1§ x Note: It will be clear from beam theory that axis
W18xT1 , X. is the neutral axis for bending of this beam, and
| | therefore the moment of inertia I, must be
< Ye ] X, determined in order to calculate the stresses and
¢ ? B " deflections of this beam.
Clox30 | | We will determine the moment of inertia I, with
Cs : %, respect to axis X; by applying the parallel-axis

Fig. 6 theorem to each individual part of the composite
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6 V. DEMENKO  MECHANICS OF MATERIALS 2020

area. The area is divided naturally into three parts: (1) the cover plate, (2) the wide-
flange section, and (3) the channel section. The following areas and centroidal distances

were obtained previously:
A =30in2 A, =208in2, Ag=8.82in?;
y1=9.485in., y,=0, y3=9.884in, y.=1.80in.

The moments of inertia of the three parts with respect to horizontal axes through their

own centroids C;, C,, and Cg are as follows:

3
I = % = é(e.o in)(0.5in.)> =0.063in*;

I, =1170in* 13=3.94in*
Now we can use the parallel-axis theorem to calculate the moments of inertia about axis

X; for each of the three parts of the composite area:

|)'(C =1y + A (y1+ Y )? =0.063in* +(3.0in.%) (11.28in.)* =382in.%;

e =12+ Agyc? =1170in% +(20.8in%)(1.80in)* =1240in.*;

'>'<'C' =13+ Ag(ys—¥c)® =3.94in* +(8.82in.2)(8.084in)? =580in.*.

The sum of these individual moments of inertia gives the moment of inertia of the

entire cross-sectional area about its centroidal axis X :

! ., _ 4
IXC_IXC+IXC+IXC =22001in.".

2 Moments of Inertia Change and Coordinate Axes Rotating
Let us consider a cross section of a rod. Relate it to a system of coordinates
210y; .
Isolate an element dA from the area A with coordinates z, y. Let us consider that

cross section’s axial moments of inertia 1y, 1, and product of inertia 1, are given

(Fig. 7):
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A 2 A It is required to determine Iy, 1, Iy,
! Z dA I.e. the moments of inertia with respect to
P2 axes y1, 1 rotated through an angle « in
z | o ) relation to systemy, z (e >0 i.e. counter
yeosa 2 clockwise rotation is chosen as positive).
,& @) Zsino. It should be observed here that the
0 Jsino / v point O is not the section centroid.
Fig. 7 Using Fig.7, we find:

1 =z2C0Sa—Yysina, Y;=YycCosa+zsina.
By definition

2 2
|y1=I21dA, |Zl=Iy1dA, |y121=.[21y1dA.
A A A

Then

ly, = [(zcosa - ysina)2 dA:COSZa_[ 2%dA -
A A

~2sinacosa | yzdA + sin? af y2dA.
A A

By similar way

I, = [(ycosa + zsina)2 dA:coszaI y2dA +
A A

+2sinacosa | ysz+sin2aj 2%dA,
A A

ly,2, = [(zcosa - ysina)(ycosa +zsina)dA =
A

:coszaj ysz—sinzaj yzdA—sinacosa | y2dA+sinacosaj22dA:
A A A A

Izsz— [ y2dA
A A
2

2

= (cos a —sin® a)j yxdA+ 2sina cosa

A
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2 2

Using moment of inertia definition and the formula cos®«a —sin“a =cos2« and

2sinacosa =Ssin2a, we may write, that

_ 2 ; . 2
Iyl—lycosza—lyzsm2a+lzsm2a,
Iz, =1;008" a +ly;sin2a + 1y sin® a, (12)

Iy_lz .
ly,z, =1y, COS2a + sin2a.

We note that functions (9, 10, 11) are periodic with a period . The axial
moments of inertia are positive. They can be minimum or maximum but

simultaneously, at the same angle «. The product of inertia changes its sign in

rotation axes.

3 Sum of Axial Moments of Inertia
It is evident, that

_ 2 2 : (02
ly, +1z =1ycos a—lysin2a+1ysin“a+

2

a+1,sin

2 2 ) (13)

+1, cos a+lyzsin2azly(cos a+sin2a)+lz(sin2a+cos o

Thus the sum of the axial moments of inertia with respect to two mutually
perpendicular axes depends on the angle of rotation and remains constant when the

axes are rotated.

Note, that
y2 + 2% = p? (14)
and
j(y2+22)dA:jp2dA, (15)
A A
where p is the distance from the origin to the element of area.
Thus
ly+1;=1,, (16)

where 1, is the familiar polar moment of inertia.
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4 Principal Axes. Principal Central Axes. Principal Moments of Inertia
Each of the quantities ly, and Iz, changes with the axis o rotation angle, but
their sum remains unchanged. Consequently there exists an angle «p at which one of

moments of inertia attains its maximum value while the other assumes a minimum
value.

Differentiating the expression for Iyl (9) with respect to o and equating the

derivative to zero, we find

dlyq _ _
izZl cosapsinay —2ly, cos2ap +217 cosapsina, =0,
(1, =1y )sin2ap =21, cos2ary, (17)
21
tan 2o = y2
|, —
Z 'y

For this value of the angle &y, one of axial moments is maximum and the other one is

minimum.

If tan 2ap >0, then axes should be rotated counter clockwise.

For the same angle «,, the product of inertia vanishes:

I, -1 ly -1

I —ysinZap+%sin2ap =0. (18)

Vg =
Axes, with respect to which the product of inertia is zero and the axial
moments takes extremal values, are called principal axes.
If, in addition, they are central, such axes called principal central axes.
The axial moments of inertia with respect to principal axes are called principal
moments of inertia.

Principal moments of inertia are determined by using the following formulas:

213,
N
2 \/(IZ—Iy)2+4I)2,Z \/(lz—ly)2+4|§2
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lz"‘ly 1\/ 2 2
|m?r)](=7iE (1,-1y) +415, (19)

The upper sign corresponds to the maximal moment of inertia and the lower
one — to the minimal moment.

Az If section has an axis of symmetry, this

axis is by all means the principal one. It

dA dA means that sectional parts, lying on
uj %4 . different sides of the axis, and products of
inertia are equal, but have opposite signs.
z>0 Consequently, ly, =0 and y and z axes are
>y principal
. <() Vi N
¢ . =21y, =0.
Fig. 8 i=1

Example 5 Determine the orientations of the principal centroidal axes and
the magnitudes of the principal centroidal moments of inertia for the cross-
sectional area of the Z-section shown in Fig. 9.

Given: Use the following numerical data: height h = 200 mm, width b = 90 mm, and
thickness t = 15 mm.

Let us use the X., Y. axes as the reference axes through the centroid C. The moments
and product of inertia with respect to these axes can be obtained by dividing the area
into three rectangles and using the parallel-axis theorems. The results of such

calculations are as follows:

Iy =29.29x10° mm*, 1,¢ =6.667x10° mm*, 1, , =-9.366x10° mm*.

XcYe

Substituting these values into the equation for the angle dp Eq. (17), we get

21
tan 260, =— | X{ =0.7930, 20, =38.4°and 218.4°.

Xy
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V. DEMENKO  MECHANICS OF MATERIALS 2020 11

Thus, the two values of Hp are
Hp =19.2°and 109.2° .

Using these values of ), in the transformation equation for le

le+1y -1
ly, = Xz Yy, X2 Y cos20), — Iy, sin20), (20)

we find le ~32.6x10% mm* and le —2.4x10° mm4, respectively. The same values
are obtained if we substitute into equations:

2
Iy +1 I, —1
5 . ycj X X 2
”mm)\ lu = Tmax = > L+ { > y} 1y
b
- (21)
P I, + | I, 1,2
f \ oot =Xy I Ty b2
h r& V = 'min 5 5 Xy
2 {/(max)
r /ﬁ: Thus, the principal moments of inertia and the angles

& Ye to the corresponding principal axes are:

b 6 4 o.
2 - |~ *; ly =32.6x10"mm~, 6, =19.2°;
A
~— b .t ly =24x10°mm*, @, =109.2°.
Fig. 9 The principal axes are shown in Fig. 9 as the U, V

axes.

Example 6 Determine the orientations of the principal centroidal axes and

the magnitudes of the principal centroidal moments of inertia for the cross-
sectional area shown in Fig. 10. Use the following numerical data (see table).

Y24 ‘
)
(=}
~
L X2
s e
XC;
o [
S — -
R b .
Cl S
X, |
Y \/ >~
U(min)
hy . Iy -

Fig. 10
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12 V. DEMENKO  MECHANICS OF MATERIALS 2020

Parts of the Geometrical properties
composite _ _ 5 5 4 2
area b, m by, m A,m ) Ixi’m Iyi,m |xiyi,m Yo, M
1- - 02 | 01 |268x10" | 115x10° | 1840x10 ° 0 ]
2- = 016 | 016 | 3L4x10 % | 774x10°° | 774x10°° | —445x10 0 | 4.3x10 2

The coordinates of angular section centroid C, are known from assortment

(X = Yo =4.3x1072m).
The coordinates of the centroid C are determined beforehand and equals to:

Xo =—7.715x1072m,

Yo =3.615x1072m.

Note: the first element (I-beam) was chosen as original in this calculation.

Let us use the X., Y. axes as the reference axes through the centroid C. The moments
and product of inertia with respect to these axes can be obtained using the parallel-axis
theorems. The results of such calculations are as follows.

|_|
i =l +15 (22)

H  H
Iy =y +Cf A =115x10"° +3615°x 26.8-10° = 465.23x10"° m*,

=15 +C5Ay =T74x1078 +3.085% x31.4x 108 =10728x10~8 m?,

X
Iy =(465.23+10728)x10"° =1538x10"° m*,
H _ 1!
ch_IYC+IYC’ (23)

Iy, =1y, 3 A =1840x107° +7.715° x 268x107° =34352x107° m*,

Ye

=10+ asA, = 774x1078 + 65852 x31.4x10~8 = 21356 %108 m*,
Cc

Iy, =(3435.2+21356)x10"° =5570.8x10"° m*,
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H -
Ixcyc B Ixcyc + IXCyC’ (24)
H H -4 -4 -8 ..4
iy Elxy, FanciAy =0+7.715(-3.615)x 10 x 268x10 ™4 = -747.4x10 8 m*,
Ixcyc = |x2y2 +82C2A2.

In last equation the product of inertia I;ZZZ IS unknown. Let’s determine it using

Fig. 11. Note, that y3, z3 axes are really principal axes of the section enertia since y3

Is the axis of its simmetry. The values of principal central moments of inertia of the

angle are specified in assortment. Let us select these values:

) - _ - _ -8 4.
\23 33 Iy3 = lmax =1229x10° m"™;
727 7] =5 |;=|Ein=319xl0_8 m*.
;2 Note: If in assortment only one of these two
02 g values is specified, the second one may be
é calculated using the fact that the sum of two axial
Fig. 11 moments of inertia is unchanged in axes rotation:
Ir?qax+lrﬁinzl;2+l;2. (25)

It is also evident, that | '. =0.
Y323

Applying rotational formula for product of inertia we find

I =1
- 1

- — Y3 Z3 : max -'|H?n1 : o
| =| COS2aq + —=—238IN201 =0+ ——2___sIn(—90°) =
Y222 Y3Z3 1 2 1 5 (-90°)

1229-319

> 1078(-1)=—455x10"% m*.

Consequently

|0y, =—455x107° +(-6.585)3.085x 31410 = ~10929x10"° m*.
C
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After substitutions the result is

| —747.4-1092.9)107° = -1840.3x107° m*.

XcYe =(

Substituting these values into the equation for the angle Op, We get

21 _
1920, = —<ke = 2x18403 197, 20, = —42°24' = 0, =-21'12'.
ly —ly, 55708-1538

The principal moments of inertia are

2
I, +1 l, —1
| =1 =t Yeu [l X Yo | |2 _(35544+22932)10°8 m*,
em?ﬁzJ(2}chc( )

IU = ey =5847.6x108m*, Iy =1, =1261.2x10°8 m*.
Checking the results:

a) Imax > 1y, > 1x, > Imin.
5847.6x10 8 >55708x108 >1538x10% >1261.2x10°°:
b) Imax + Imin =1x, + 1y,
584761078 +1261.2x10 8 =5570.8x10® +1538x107 2,

(7108.8 «10~8 = 71088 x10_8) :

Iy —1
C) luv = lx,y, C0S26, +%sin 20y =

1538 -5570.8

- {—1804.3 x0.7384 + x (—0.6743)} x1078 = (-1358.9+1359)x10~® m* = 0.
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5 Example of home problem

National aerospace university
“Kharkiv Aviation Institute”
Department of aircraft strength
Subject: mechanics of materials

Document: home problem
Topic: Internal Forces in Multispan Beams.

Full name of the student, group

Variant: 1 Complexity: 1

Ot SY b, .
i 7y

Given: ¢ =10kN/m; P=20kN; M =10kNm; a=3m.

Goal:
1) open static indeterminacy using the equation of three moments and draw the

graphs Q. (x), My(x).

signature
Full name of the lecturer

Mark:

Solution

1. Use the following numerical data (see Table) and draw the section in scale (Fig.

Yo yeb it
- ) e a4 _
1
(==}
Y = C2 \ .X'2‘
L()\l 1~ \\_\ 4
-4 ‘ X
~ ~ ‘
~ X0 C ~<
< — > ~<
) \_ ~ Ye Y, Xy
( C ) =
\] \ Yy,
hy -~ hy
Fig. 1
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Table
Geometrical properties

COF;g[r)tgs(l):et?l?ea hl y bl , A'é IXI ’ I yl y leyl y Imaxl y Imlnl ’ yo’

m m m m4 m4 m4 m4 m4 m
1- 0.2 | 0.1 |26.8x107 | 115x10°° | 1840x107° 0 1840x107° | 115x1078 -
GOST 8239-72 ' ’ '
2- = 4 8 -8 8 8 w
GOST 8500-72 0.16 | 0.16 | 31.4x107* | 774x107° | 774x10 — 1229x107° | 319x107° | 4.3x10

The coordinates of two C; and C, centroids for the parts are known from

assortments (Xg =Yg = 4.3x107° m).

2. Calculation of the centroidal coordinates for composite area.

AXxes xq, yp are selected as reference axes in this study (see Fig. 1).

The following formulae are used

H

Xe =Sy A, Yo =Sy /A,
H . _
Sy, =Sy, +Sy1, Sy, = Sx

1

where

l_|_|
+S_ .

X

A=A+ A" =268x10"*+31.4x10*=58.2x104 m?.

H H
Sy, and Sy, are zero due to central character of x;, y; axes for I-beam.

S, = A(+(b —%— Yo)) =31.4x10~#(+(0.16 —0.05—0.043)) =31.4 x10~* x 0.067 =

= 4+2.10x1074 m3.

S, =A (—(% +%0)) =31.4x1074(~(0.1+0.043)) = —4.49x 10~ m®.

Sy, =0-4.49 x10™% = —4.49%x10~* m3.

Sy, =0+2.10x107% =+2.10x10~* m®.

Xo =—4.49x1074/58.2x10™* =—0.077 m=—7.715¢cm.

Yo =+2.10x1074/58.2x10™* = +0.03615 m = +3.615 cm.

Results: the coordinates of the C centroid are equal to:
Xo =—7.715x1072 m,

Yo =3615x1072 m.

They are shown on Fig. 1.
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3. Calculation of central moments of inertia relative to central x., y. axes.

Let us denote the x., Y. axes as the centroidal axes of the composite area. The
moments and product of inertia with respect to these axes can be obtained using the
parallel-axis theorems. The results of such calculations are as follows.

— M
e =15+ 15,
Iy =Ty +C7 A =115x10"° +3615” x 26.8x10° = 465.23x 10 °m",

o=l t C5 Ay =774x1078 +3.085% x 31.4x 108 =10728x10 8 m?,

XC
Iy =(465.23+10728)10° =1538x10°m"
Ly =15 +13
Iy =1 +af A =1840x10° +7.715° x 268x10™° =3435.2x10° m",
I =1 +a3Ay =774x107° +6585” x 31410 = 2135.6x10™° m"

I, =(3435.2+21356)10"° =55708x10°m".

4. Calculation of the product of inertia relative to x., y. axes.
Ix.ye = IchcH+ I;Cyc,
For the first part of the section:
II—|
XcYe
For second part the similar approach is used:

I_|

=] "' +4asC )
xeYe = Ty, t 82022

The value of I;Z vy should be determined beforehand using transformation equations

for product of inertia and taking into account that in rotation of axes the sum of axial
moments of inertia is unchanged, i.e. Iy, +1y, =Imax +Imin. The axes rotating
procedure is shown in Fig. 2. The X3, Y3 axes are selected as reference axes in this

rotation to Xp, Yy, axes. Due to cross-

H -4 4 -8
15y, +aC1A =0+7.715(~3.615)x 10~ x 268x10* =—747.4x10 % m",

V24 section symmetry relative to x3 axis, the
y3\ X3 angle of rotation is 6, =—45° (clockwise
<o  rotation).
k 0p=-45 In  our case, general view of
transformation equation for product of
- inertia
X2
C Iy =1y .
Ly vy :Tsm 20 + 1y, cos20
_ will be rewritten as

Fig. 2
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3 Y3
| —sin20p + gy, C0s20p .

Xo¥o ~

After substituting,

1229x1078-319x1078

XoYp = > $in(—90°) + 0cos(~90°) = —455x 1078 m*.

In our designations, this product will be denoted as I;Zyz = _455x10 % m*,

Consequently,

1, =455 x1078 4+ (~6.585)(3.085) x 31.4x 1078 = ~1092.9x 108 m*.
CJC

Total result after substitutions is
ly_y, =(~747.4-10929) x10"® =-18403x10"° m*.

5. Rotating central X, y. axes to central principal position at 6, angle.

Substituting the values of central moments and product of inertia into the equation
for the angle 6, we get

2lxy, _ 2x(-18403) _ 09127 — 20
5570.8 —1538

926, = . p=—4224'=0,=-2112.

Ye X
Note, that this angle is clockwise due to used sign convention. It is shown in
resultant picture shown below (Fig. 3).

It is important to note that in any rotation of axes to principal position larger of two
axial moments of inertia (ch =5570.8 cm4) becomes the largest (maximum) and

smaller one ( IyC =1538 cm4) becomes the minimum in value.

6. Calculation of principal central moments of inertia for composite area.
The principal moments of inertia are determined using the formula

2
I, +1 I, —I

— __ % Y Xc Yy 2 _ -8 4
|y = Tmax =5 ( - cj 1y, =(35544:+2293.2)x107° m?,

min

U = ey =5847.6x108m*, Iy =1, =1261.2x10°8 m*.

Note, both values must be positive!
7. Checking the results:
(a) Checking the correspondence: 5 > ch > IXc > lmin (in the case ch > IXC)

or
Imax > Ix, >y, > Imin (inthe case Iy >1y ).

Inour case, 5847.6x10° >55708x10° >1538x10° >1261.2x1075.
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(b) Checking the constancy of the sum of axial moments of inertia in rotating the
axes:

5847.6x10 8 +1261.2x108 =5570.8x10° +1538x1073

(7108.8 «1078 =71088 ><10_8) .

(c) Calculating the evidently zero central principal product of inertia of the section:

ly, —|
Iy =y y, €0S26, +%sin 20, =
153855708

- [(—1804.3) x0.7384 + x (—0.6743)} x107% = (~1358.9 +1359)x10° m* = 0.
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> 1
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