LECTURE 6 Plane Bending Deformation. Diagrams of Internal Forces (Continued)

1 Construction of Bending Moment and Shearing Force Diagrams for Two Supported Beams

In this mode of loading, first of all, we should determine the support reactions. Let us consider the method in following example.

Example 1 Internal forces induced by concentrated force

Fig. 1

Given: F, a, b.
R.D.: $Q_{z}(x), M_{y}(x)$.

Let us find the support reactions R_{B} and R_{A} from the equations of equilibrium of the beam:

$$
\begin{gather*}
\sum M_{A}=0 \rightarrow R_{B}(a+b)-F a=0, \tag{1}\\
R_{B}=\frac{F a}{a+b}, \tag{2}\\
\sum M_{B}=0 \rightarrow \\
R_{A}(a+b)-F b=0, \tag{3}\\
R_{A}=\frac{F b}{a+b} . \tag{4}
\end{gather*}
$$

Let us check the support reactions

$$
\begin{equation*}
\sum F_{z}=0, \quad \frac{F b}{a+b}-F+\frac{F a}{a+b}=0 \tag{5}
\end{equation*}
$$

The result is true.
Let us divide the beam into portions and write the equations of shearing forces and bending moments for an arbitrary cross-sections of two portions: I-I and II-II. From the conditions of equilibrium of the left (I-I) or right (II-II) portion of the mentally cut rod it follows that for portion I at a distance \boldsymbol{x} from support \boldsymbol{A} internal forces are described by the equations.

$$
\begin{equation*}
Q_{z}^{I}(x)=R_{A}=\frac{F b}{a+b}, \quad M_{y}^{I}(x)=R_{A} x=\left.\frac{F b}{a+b} x\right|_{x=0}=\left.0\right|_{x=a}=\frac{F b a}{a+b} \tag{6}
\end{equation*}
$$

Portion II. An arbitrary section II is situated at a distance x within the limits

$$
\begin{align*}
& 0 \leq x \leq b: \quad Q_{z}^{I I}(x)=-R_{B}=-\frac{F a}{a+b} \tag{7}\\
& M_{y}^{I I}(x)=R_{B} x=\left.\frac{F a}{a+b} x\right|_{x=0}=\left.0\right|_{x=b}=\frac{F a b}{a+b} \tag{8}
\end{align*}
$$

Thus, in each portion of the beam, the force Q_{z} is constant in value and is positive for portion I and negative for portion II.

The moment depends linearly on x; it increases in portion I from 0 to $F a b /(a+b)$ and increases from zero to this value in portion II. The diagrams of $Q_{z}(x)$ and $M_{y}(x)$ can now be created using results of these calculations.

It should be noted that the diagram of shearing forces has an abrupt in the point of application of specified external force, which is equal to the magnitude of the force.

For instance, the $Q_{z}(x)$ diagram has three abrupts corresponding to the forces R_{A}, F, R_{B}. There are no any abrupt in the diagram of bending moments.

Fig. 2

Example 2 Internal forces induced by concentrated moment
Given: M, a, b.
R.D.: $Q_{z}(x), M_{y}(x)$.

From the equations of equilibrium, the reactions are

$$
\begin{equation*}
R_{A}=R_{B}=\frac{M}{a+b} \tag{9}
\end{equation*}
$$

since

$$
\begin{array}{r}
\sum M_{A}=0 ; \quad R_{B}(a+b)-M=0 \\
R_{B}=\frac{M}{a+b}, \quad R_{B}=R_{A} . \tag{10}
\end{array}
$$

Equations of internal forces:
Portion I: $0 \leq x \leq a$

$$
\begin{equation*}
Q_{z}^{I}(x)=R_{A}=\frac{M}{a+b} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
M_{y}^{I}(x)=R_{A} x=\left.\frac{M x}{a+b}\right|_{x=0}=\left.0\right|_{x=a}=\frac{M a}{a+b} \tag{12}
\end{equation*}
$$

Portion II: $0 \leq x \leq b$

$$
\begin{gather*}
Q_{z}^{I I}(x)=+R_{B}=+\frac{M}{a+b} \tag{13}\\
M_{y}^{I I}(x)=-R_{B} x=-\left.\frac{M x}{a+b}\right|_{x=0}=\left.0\right|_{x=b}=-\frac{M b}{a+b} \tag{14}
\end{gather*}
$$

Note: point of an external moment application, the bending moment diagram has "jump" (abrupt). It is equal to the magnitude of the active moment applied in this point.

Fig. 3

$$
\begin{equation*}
M_{y}^{I}(x)=\frac{q l}{2} x-\left.\frac{q x^{2}}{2}\right|_{x=0}=\left.0\right|_{x=l / 2}=\left.\frac{q l^{2}}{8}\right|_{x=l}=0 \tag{17}
\end{equation*}
$$

The shearing force decreases linearly from $\frac{q l}{2}$ to $-\frac{q l}{2}$ and the bending moment varies along the beam length non-linearly and attains the maximum value in the beam midsection.

Example 4 Internal forces induced by linearly distributed load

Given: q_{m}, l.

Fig. 4
R.D.: $Q_{z}(x), M_{y}(x)$.

Calculation of the support reactions:

$$
\begin{gather*}
\sum M_{A}=0, R_{B} l-\frac{q l}{2} \frac{1}{3} l=0, \tag{18}\\
R_{B}=\frac{q l}{6}, \tag{19}\\
\sum M_{B}=0, R_{A} l-\frac{q l}{2} \frac{2}{3} l=0, \tag{20}\\
R_{A}=\frac{q l}{3}, \tag{21}
\end{gather*}
$$

Checking:

$$
\begin{equation*}
\sum F_{z}=0, \quad \frac{q l}{6}+\frac{q l}{3}-\frac{q l}{2}=0 . \tag{22}
\end{equation*}
$$

The equations of $Q_{z}(x)$ and $M_{y}(x)$ are as follows:

$$
\begin{equation*}
Q_{z}^{I}(x)=-R_{B}+\frac{q x^{2}}{2 l}=-\frac{q l}{6}+\left.\frac{q x^{2}}{2 l}\right|_{x=0}=-\left.\frac{q l}{6}\right|_{x=l}=\frac{q l}{3} ; \tag{23}
\end{equation*}
$$

Extreme value of bending moment is calculated substituting into its equation corresponding coordinate of the point. The last one is determined equating to zero the derivative of bending moment function which is described by shear force (check if you disagree):

$$
\begin{equation*}
Q_{z}^{I}\left(x_{e}\right)=-\frac{q l}{6}+\frac{q x_{e}^{2}}{2 l}=0 \rightarrow x_{e}=\frac{l}{\sqrt{3}} . \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
M_{y}^{I}(x)=R_{B} x-\frac{q x^{3}}{6 l}=\frac{q l}{6} x-\left.\frac{q x^{3}}{6 l}\right|_{x=0}=\left.0\right|_{x=l}=\left.0\right|_{x=x_{e}}=\frac{q l^{2}}{9 \sqrt{3}} \tag{25}
\end{equation*}
$$

2 Relationships Between Bending Moment M_{y}, Shearing Force Q_{z} and Distributed Load Intensity $\boldsymbol{q}(\boldsymbol{x})$

Let a rod be fixed in arbitrary manner and subjected to a distributed load of intensity $q=q(x)$ in general case. There are other loads applied to the beam.

The direction adopted for q is considered positive (see Fig. 5).
Isolate an element of length $d x$ from the rod and apply to both its boundaries the moments M_{y} and $M_{y}+d M_{y}$ and also shearing forces Q_{z} and $Q_{z}+d Q_{z}$.

Fig. 5
The load q may be considered to be uniformly distributed within the infinitesimally small segment $d x$ (see Fig. 6).

Fig. 6

Equate to zero the sum of the projections of all forces on a vertical axis z :

$$
\begin{equation*}
Q_{z}+q(x) d x-Q_{z}-d Q_{z}=0 \tag{26}
\end{equation*}
$$

Making simplifications, we obtain

$$
\begin{equation*}
\frac{d Q_{z}(x)}{d x}=q(x) \tag{27}
\end{equation*}
$$

Equate to zero the sum of the moments with respect a transverse axis $y($ point $A)$

$$
\begin{equation*}
M_{y}+Q_{z} \cdot d x+q(x) d x \frac{d x}{2}-M_{y}-d M_{y}=0 \tag{28}
\end{equation*}
$$

Making simplifications and rejecting the small quantity of higher order, we obtain

$$
\begin{equation*}
\frac{d M_{y}(x)}{d x}=Q_{z}(x) \tag{29}
\end{equation*}
$$

Thus the shearing force in fact represents the derivative of the bending moment with respect to the length of the rod. This conclusion was proved in the example mentioned above.

The derivative of the shearing force equals to the intensity of external distributed load q.

Example 5 General case of cantilever beam loading

Fig. 7

Given: $a=2 \mathrm{~m}, \quad b=1 \mathrm{~m}, \quad c=3 \mathrm{~m}$, $F=50 \mathrm{kN}, q=40 \mathrm{kNm}$,
$M=60 \mathrm{kNm}$.
R.D.: $Q_{z}(x), M_{y}(x)-$?

Equations of internal forces in an arbitrary cross-sections of the portions:

$$
\text { I-I } \quad 0<x<a
$$

$Q_{z}^{I}(x)=+F-\left.q x\right|_{x=0}=\left.50\right|_{x=2}=$ $=-30 \mathrm{kN}$,
$M_{y}{ }^{I}(x)=+F x-\left.q x \frac{x}{2}\right|_{x=0}=$
$=\left.0\right|_{x=2}=20 \mathrm{kNm}$.
$M_{y \text { max }}^{I}-$?
$\left|Q_{z}^{\mathrm{I}}\right|=\frac{d M}{d x}=F-q x ; \quad Q_{z}\left(x_{e}\right)=0$.

$$
\frac{d M\left(x_{e}\right)}{d x}=F-q x_{e}=0 \rightarrow x_{e}=\frac{F}{q}=1.25 \mathrm{~m}
$$

$M_{y_{\max }}^{I}=M_{y}^{I}\left(x_{e}\right)=F\left(x_{e}\right)-\frac{q\left(x_{e}\right)^{2}}{2}=50(1.25)-\frac{40(1.25)^{2}}{2}=62.5-31.25=31.25 \mathrm{kNm}$.
II-II $0<x<b$
$Q_{z}^{I I}(x)=+F-q a=-30 \mathrm{kN}$,
$M_{y}^{I I}(x)=F(a+x)-\left.q a\left(\frac{a}{2}+x\right)\right|_{x=0}=50 \times(2+0)-40 \times 2(1)=\left.20\right|_{x=1}=-10 \mathrm{kNm}$.
III-III $0<x<b$
$Q_{z}^{I I I}(x)=F-q a=-30 \mathrm{kN}$,
$M_{y}^{I I I}(x)=F(a+b+x)-q a\left(\frac{a}{2}+b+x\right)-\left.M\right|_{x=0}=-\left.10\right|_{x=1}=-70 \mathrm{kNm}$.

Example 6 General case of two supported beam loading

Given: $\quad q=20 \mathrm{kNm}, \quad F=50 \mathrm{kN}$,
$M=130 \mathrm{kNm}, a=3 \mathrm{~m}$,
$b=c=d=1 \mathrm{~m}$.
R.D.: $Q_{z}(x), M_{y}(x)-$?

1) Calculation of reactions R_{A}, R_{B} :

$$
\begin{aligned}
& \sum M_{A}=0=+M+F(a+b)+ \\
& +q a \frac{a}{2}-R_{B}(a+b+c+d) \\
& R_{B}=+70 \mathrm{kN}
\end{aligned}
$$

The plus sign means coincidence of R_{B} actual direction with originally selected.

Fig. 8

$$
\begin{gathered}
\sum M_{B}=0=+M-F(c+d)-q a\left(\frac{a}{2}+b+c+d\right)+R_{A}(a+b+c+d), \\
R_{A}=+40 \mathrm{kN} .
\end{gathered}
$$

Checking: $\sum F_{z}=0=-R_{A}-R_{B}+F+q a=-40-70+50+20 \times 3$, i.e. the reactions are determined correctly.
2) Equations of internal forces in an arbitrary cross-sections of corresponding portions:

I-I $0<x<1$
$Q_{z}^{I}(x)=-R_{B}=-70 \mathrm{kN}$,
$M_{y}{ }^{I}(x)=+\left.R_{B} x\right|_{x=0}=\left.0\right|_{x=1}=70 \mathrm{kNm}$.
II-II $0<x<1$
$Q_{z}^{I I}(x)=-R_{B}=-70 \mathrm{kN}$,
$M_{y}{ }^{I I}(x)=+R_{B}(d+x)-\left.M\right|_{x-0}=\left.60\right|_{x=1}=10 \mathrm{kNm}$.
III-III $0<x<1$
$Q_{z}^{\text {III }}(x)=R_{A}-\left.q x\right|_{x=0}=\left.40\right|_{x=3}=-20 \mathrm{kNm}$,
$M_{y \text { max }}^{I I I}-$?
$Q_{z}^{I I I}\left(x_{e}\right)=R_{A}-q x_{e}=0 \rightarrow x_{e}=\frac{R_{A}}{q}=\frac{40}{20}=2 \mathrm{~m}$,
$M_{y}^{I I I}\left(x_{e}\right)=R_{A} x_{e}-q \frac{x_{e}{ }^{2}}{2}=+40 \mathrm{kNm}$.
IV-IV $0<x<1$
$Q_{z}^{I V}(x)=R_{A}-q a=-20 \mathrm{kN}$,
$M_{y}{ }^{I V}(x)=+R_{A}(a+x)-\left.q a\left(\frac{a}{2}+x\right)\right|_{x=0}=\left.30\right|_{x=1}=10 \mathrm{kNm}$.

Example 7 General case of two supported beam loading

The plus sign means coincidence of R_{B} actual direction with originally selected.
(b) $\sum M_{B}=0=+F d+2 M-M+$
$+q c \frac{c}{2}-q d \frac{d}{2}+R_{A}^{o r i g}(b+c)-q a\left(\frac{a}{2}+b+c\right)=$

Fig. 9 $=100(4)+2(60)-60+20 \frac{9}{2}-$
$-20 \frac{16}{2}+R_{A}(4)-40(1+1+3)=R_{A}^{\text {orig }}(4)+190, R_{A}^{\text {orig }}=-47.5 \mathrm{kN}$.
The minus sign means non-coincidence of R_{B} actual direction with originally selected. Thus, original direction of R_{A} must be changed on opposite.
(c) Checking: $\quad \sum F_{z}=0=+R_{A}^{a c t}-R_{B}^{\text {orig }}+F+q a-q(c+d)=0$, i.e. the reactions are determined correctly.
2) Equations of internal forces in an arbitrary cross-sections of corresponding portions:

$$
\begin{gathered}
\mathbf{I}-\mathbf{I} \quad 0<x<a \\
Q_{z}^{I}(x)=-\left.q x\right|_{x=0}=\left.0\right|_{x=2}=-40 \mathrm{kN}, \quad M_{y}^{I}(x)=\left.q x \frac{x}{2}\right|_{x=0}=\left.0\right|_{x=2}=-40 \mathrm{kNm}
\end{gathered}
$$

II-II $0<x<b$
$Q_{z}^{I I}(x)=-q a-R_{\text {Aactual }}=-87.5 \mathrm{kN}$,
$M_{y}^{I I}(x)=-q a\left(\frac{a}{2}+x\right)-R_{\text {Aactual }} x+\left.2 M\right|_{x=0}=+\left.80\right|_{x=1}=-7.5 \mathrm{kNm}$.
III-III $0<x<d$
$Q_{z}^{I I I}(x)=+F-\left.q x\right|_{x=0}=+\left.100 k N\right|_{x=4}=+20 \mathrm{kN}$,
$M_{y}^{I I I}(x)=-F x+\left.q x \frac{x}{2}\right|_{x=0}=\left.0\right|_{x=4}=-240 \mathrm{kNm}$.
IV-IV $0<x<c$
$Q_{z}^{I V}(x)=+F-q(d+x)-\left.R_{B}\right|_{x=0}=-\left.27.5 k N\right|_{x=3}=-87.5 \mathrm{kN}$,
$M_{y}^{I V}(x)=-F(d+x)+R_{B} x+q(d+x) \times\left.\left(d+\frac{x}{2}\right)\right|_{x=0}=-\left.240 k N\right|_{x=3}=-67.5 \mathrm{kNm}$.

3 Construction of Internal Force Diagrams for Statically Determinated Frames

By a bar system is meant any structure consisting of rod-shaped elements. If the elements of a structure act primarily in tension or compression, the bar system is called a truss. If the elements of a bar system are primarily in bending or torsion, the system is called a frame. We will consider plane frames.

By a statically determinate system is meant a system for which all the reactions of the supports can be determined by means of equations of equilibrium and the internal forces at any cross section can also be found by the method of sections.

Fig. 10

Given: F, a, b.
R.D.: $N_{x}(x), Q_{z}(x), M_{y}(x)$ functions and their graphs.

Solution

Equations of internal forces in two portions are:

$$
\mathbf{I}-\mathbf{I} \quad 0<x<a
$$

$N^{I}(x)=0, \quad Q_{z}^{I}(x)=0$,
$M_{y}^{I}(x)=-\left.F x\right|_{x=0}=\left.0\right|_{x=a}=-F a$,

II-II $0<x<b$

$$
N^{I I}(x)=-F, \quad Q_{z}^{I I}(x)=0, \quad M_{y}^{I I}(x)=-F a
$$

Corresponding graphs are:

Fig. 11

Example 9 Calculation of internal forces in plane frame

Given: $q=20 \mathrm{kN} / \mathrm{m}, l=3 \mathrm{~m}$.
R.D.: $N_{x}(x), Q_{z}(x), M_{y}(x)$.

At first let us determine the reactions in supports A and B :
a) $\sum M_{B}=0$, $R_{A} \cdot 6-20 \times 3 \times 1.5=0, R_{A}=+15 \mathrm{kN} ;$
b) $\sum F_{x}=0$,
$R_{B}^{h}=q b=+60 \mathrm{kN}:$
c) $\sum M_{A}=0$,

Fig. 12

$$
R_{B v}^{\text {orig }} \cdot 6+60 \times 3-20 \times 3 \times 1.5=0
$$

$R_{B v}^{o r i g}=-15 \mathrm{kN}$ (actual direction of $R_{B v}^{a c t}$ is opposite to original).
Let us write the equations of the internal forces:
$N^{I}{ }_{x}(x)=0 ;$
$N^{I I}{ }_{x}(x)=+R_{A}=+15 \mathrm{kN} ;$
$N^{I I I}{ }_{x}(x)=+R_{B h}=+60 \mathrm{kN} ;$
$Q_{z}^{I}(x)=R_{A}=15 \mathrm{kN} ;$
$Q_{z}^{I I}(x)=-\left.q x\right|_{x=0}=\left.0\right|_{x=l}=-60 \mathrm{kN} ;$
$Q_{z}^{I I I}(x)=+R_{B v}^{a c t}=15 \mathrm{kN} ;$
$M_{y}^{I}(x)=\left.R_{A} \cdot x\right|_{x=0}=\left.0\right|_{x=l}=45 \mathrm{kNm} ;$
$M_{y}^{I I}(x)=R_{A} \cdot l-\left.\frac{q x^{2}}{2}\right|_{x=0}=+\left.45\right|_{x=3}=-45 \mathrm{kNm} ;$
$M_{y}^{I I I}(x)=-\left.R_{B v}^{a c t} \cdot x\right|_{x=0}=\left.0\right|_{x=3}=-45 \mathrm{kNm}$.

Using this equations the bending moment diagram and the diagrams of normal and shearing forces may be constructed:
$N_{x}(x), \mathrm{kN}$
$Q_{z}(x), \mathrm{kN}$

$$
M_{y}(x), \mathrm{kNm}
$$

Fig. 15
Checking the results, i.e. the equilibrium of the frame angles.

Fig. 16

Example 10 Calculation of internal forces in plane frame

Given: $q=40 \mathrm{kN} / \mathrm{m}, F=50 \mathrm{kN}, M=40 \mathrm{kNm}, a=2 \mathrm{~m}, b=4 \mathrm{~m}, c=3 \mathrm{~m}$.
R.D.: $N_{x}(x), Q_{z}(x), M_{y}(x)-$?

1) Calculation of support reactions:
(a) $\sum M_{A}=0=-M-M+F a-q a \frac{a}{2}+q b \frac{b}{2}+R_{B v}^{o r i g} b \rightarrow R_{B v}^{\text {orig }}=-65 \mathrm{kN}$. The minus sign means non-coincidence of $R_{B v}$ actual direction with originally selected. Thus,
original direction of $R_{B v}$ must be changed on opposite.
(b) $\sum F_{z}=0=-F+R_{A}^{\text {orig }}-R_{B v}^{a c t}+q(a+b) \rightarrow R_{A}=-125 \mathrm{kN}$, i.e. actual direction of R_{A} is upwards.
(c) $\sum F_{x}=0=R_{B h}-F \rightarrow R_{B h}=+50 \mathrm{kN}$ (right directed).

2) Equations of internal forces in an arbitrary cross-sections of the portions (see Fig. 17):

I-I $0<x<a$
$N_{x}^{I}(x)=0$,
$Q_{z}^{I}(x)=+F-\left.q x\right|_{x=0}=$
$=\left.50\right|_{x=2}=-30 \mathrm{kN}$,

$$
\begin{aligned}
& M_{y}^{I}(x)=F x-\left.q x \frac{x}{2}\right|_{x=0}= \\
& =\left.0\right|_{x=2}=100-80=+20 \mathrm{kNm}
\end{aligned}
$$

Fig. 17

$$
Q_{z}^{I}\left(x_{e}\right)=F-q x_{e}=0
$$

$x_{e}=\frac{F}{q}=\frac{50}{40}=1.25 \mathrm{~m}$.
$M_{y}^{I}\left(x_{e}\right)=M_{y \text { max }}^{I}=F x_{e}-\frac{1}{2} q x_{e}{ }^{2}=+31.25 \mathrm{kNm}$.
II-II $0<x<c$
$N_{x}^{I I}(x)=-R_{A}=-125 \mathrm{kN}, \quad Q_{z}^{I I}(x)=+F=+50 \mathrm{kN}$,
$M_{y}^{I I}(x)=-\left.F x\right|_{x=0}=\left.0\right|_{x=3}=-150 \mathrm{kNm}$.
III-III $0<x<c$
$N_{x}^{I I I}(x)=-R_{B v}=-65 \mathrm{kN}, \quad Q_{z}^{I I I}(x)=-R_{B h}=-50 \mathrm{kN}$,
$M_{y}^{I I I}(x)=+R_{B h} x+\left.M\right|_{x=0}=\left.40\right|_{x=3}=+190 \mathrm{kNm}$.

IV-IV $0<x<c$
$N_{x}^{I V}(x)=+R_{B h}=+50 \mathrm{kN}, \quad Q_{z}^{I V}(x)=-R_{B v}+\left.q x\right|_{x=0}=-\left.65\right|_{x=4}=95 \mathrm{kN}$,
$M_{y}^{I V}(x)=-q x \frac{x}{2}+R_{B v} x+M+\left.R_{B h} c\right|_{x=0}=\left.190\right|_{x=4}=130 \mathrm{kNm}$.
$Q_{z}^{I V}\left(x_{e}\right)=-R_{B v}^{a c t}+q x_{e}=0 \rightarrow x_{e}=\frac{R_{B v}^{a c t}}{q}=\frac{65}{40}=1.625 \mathrm{~m}$,
$M_{y}^{I V}\left(x_{e}\right)=M_{y \max }^{I V}=-q \frac{x_{e}^{2}}{2}+R_{B v}^{a c t} x_{e}+M+R_{B h}^{a c t} c=-10 \frac{(1.625)^{2}}{2}+65(1.625)+40+$ $+50 \times 3=282.4 \mathrm{kNm}$.

Fig. 18

Fig. 19
$M_{y}(x), \mathrm{kNm}$

3) Checking the results i.e. an equilibrium of the rods connection areas (see Figs 21-22).
Fig. 20

Fig. 21

Fig. 22

4 Construction of the $Q_{z}(x)$ and $M_{y}(x)$ Diagrams for Curvilinear Beams

Given: R, F.
R.D: $N_{x}(a), Q_{z}(a), M_{y}(a)$.

The force F can be resolved along the x and z axes into the components $F \cos \alpha$ and $F \sin \alpha$.

Fig. 23

$$
\begin{aligned}
& N_{x}(\alpha)=-F_{x}=-\left.F \sin \alpha\right|_{\alpha=0}=\left.0\right|_{\alpha=\pi / 2}=-\left.F\right|_{\alpha=\pi}=0 \\
& Q_{z}(\alpha)=+F_{z}=\left.F \cos \alpha\right|_{\alpha=0}=\left.F\right|_{\alpha=\pi / 2}=\left.0\right|_{\alpha=\pi}=-F \\
& M_{y}(\alpha)=F h=\left.F R \sin \alpha\right|_{\alpha=0}=\left.0\right|_{\alpha=\pi / 2}=\left.F R\right|_{\alpha=\pi}=0
\end{aligned}
$$

Fig. 24

Example 11 Calculation of internal forces in curvilinear frame

Fig. 25

Given: M, F, R.
R.D.: $N_{x}(a), Q_{z}(a), M_{y}(a)$.

Solution

Equations of internal forces are:

$$
\text { I-I } \quad 0<\alpha<\pi / 2
$$

$$
N^{I}(\alpha)=0 ; \quad Q_{z}^{I}(\alpha)=0
$$

$$
M_{y}^{I}(\alpha)=-M
$$

II-II $\quad 0<\alpha<\pi / 2$
$N^{I I}(\alpha)=\left.P \sin \alpha\right|_{\alpha=0}=\left.0\right|_{\alpha=\pi / 2}=P$,
$Q_{z}^{I I}(\alpha)=-\left.P \cos \alpha\right|_{\alpha=0}=-\left.P\right|_{\alpha=\pi / 2}=0$,
$M_{y}^{I I}(\alpha)=-M+\left.P R \sin \alpha\right|_{\alpha=0}=-\left.M\right|_{\alpha=\pi / 2}=-M+P R$.
The graphs of internal forces are:

Fig. 26

Example 12 Calculation of internal forces in plane frames with curvilinear elements

Given: $M=40 \mathrm{kHm}, q=10 \mathrm{kN} / \mathrm{m}, a=1 \mathrm{~m}$.
R.D.: N_{x}, Q_{z}, M_{y} functions and their graphs.

Solution

1) Calculation of support reactions:
$\sum F_{x}=0 \rightarrow 2 q a-R_{A H}=0 \rightarrow$
$\rightarrow R_{A H}=20 \mathrm{kN}$,
$\sum M_{A}(F)=0 \rightarrow R_{\mathrm{B}} \cdot 2 a-M-2 q a^{2}=0 \rightarrow$
$\rightarrow R_{B}=30 \mathrm{kN}$,
$\sum F_{z}=0 \rightarrow R_{\mathrm{B}}-R_{A V}=0 \rightarrow R_{A V}=30 \mathrm{kN}$.
Fig. 27
2) Equations of internal forces in an arbitrary cross-sections of corresponding portions:

I-I $0 \leq x \leq a$
$N_{x}^{I}(x)=-R_{B}=-30 \mathrm{kN}, Q_{z}^{I}(x)=0, M_{y}^{I}(x)=0$.
II-II $\quad 0 \leq \alpha \leq \pi / 2$
$N_{x}^{I I}(a)=-\left.R_{B} \cos \alpha\right|_{\alpha=0}=-\left.30\right|_{\alpha=\pi / 2}=0$,
$Q_{z}^{I I}(a)=-\left.R_{B} \sin \alpha\right|_{\alpha=0}=\left.0\right|_{\alpha=\pi / 2}=-30 \mathrm{kN}$,
$M_{y}^{I I}(a)=\left.R_{B} a(1-\cos \alpha)\right|_{\alpha=0}=\left.0\right|_{\alpha=\pi / 2}=R_{B} a=30 \mathrm{kNm}$.
III-III $0 \leq \alpha \leq \pi / 2$
$N^{I I I}(a)=\left.R_{B} \sin \alpha\right|_{\alpha=0}=\left.0\right|_{\alpha=\pi / 2}=30 \mathrm{kN}$,
$Q_{y}^{I I I}(a)=-\left.R_{B} \cos \alpha\right|_{\alpha=0}=-\left.30\right|_{\alpha=\pi / 2}=0$,

$$
\begin{aligned}
& M_{y}^{I I I}(x)=R_{B} a(1+\sin \alpha)-\left.M\right|_{\alpha=0}=-\left.10\right|_{\alpha=\pi / 2}=20 \mathrm{kNm} \\
& \quad \mathbf{I V}-\mathbf{I V} \quad 0 \leq \alpha \leq 2 a \\
& N^{I V}(x)=R_{A V}=30 \mathrm{kN}, \quad Q_{y}^{I V}(x)=R_{A H}-\left.q x\right|_{x=0}=\left.20\right|_{x=2}=0 \\
& M_{y}^{I V}(x)=R_{A H} x-\left.\frac{q x^{2}}{2}\right|_{x=0}=\left.0\right|_{x=2}=20 \mathrm{kNm}
\end{aligned}
$$

Fig. 28

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

National aerospace university "Kharkiv Aviation Institute"

Department of aircraft strength

Course
Mechanics of materials and structures
HOME PROBLEM 5

Graphs of Shear Force and Bending Moment Distribution in Plane Bending (TwoSupported Beams)

Name of student:

Group:
Advisor:
Data of submission:
Mark:

National aerospace university
 "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials
Document: home problem
Topic: graphs of shear force and bending moment distribution along the length of a beam in plane bending deformation.
Full name of the student, group

Variant: 1
Complexity: 1

Given: $q=10 \mathrm{kN} / \mathrm{m}, M=20 \mathrm{kNm}, P=30 \mathrm{kN}, a=2 \mathrm{~m}, b=4 \mathrm{~m}, c=2 \mathrm{~m}$.

Goal: obtain the equations of shear force and bending moment in the crosssections of a beam and design the graphs of their distribution along the beam length.
Full name of the lecturer signature

Mark: \square

Shear force in a prismatic rod is equal to the algebraic sum of all external forces projections on the cross-section lying on one side of the section (left or right).

The bending moment at a section is equal to the sum of moments, in relevance to the transverse axis in the section, of all external forces applied to one side of the section (left or right).

Solution

1. Accepting the sign conventions in internal forces calculating.
(a) for shear force
(b) for bending moment

$$
Q_{z}^{m-m}<0
$$

$M_{y}^{m-m}>0$

$M_{y}^{m-m}<0$

Fig. 1
2. Calculating the reactions in supports R_{A} and R_{C} (see Fig. 2). Since their actual directions are unknown we will direct the reactions arbitrary, for example, upwards. The reaction positive sign from future calculating will mean that the reaction original direction is coincident with actual one and vice versa. For the reactions calculating we will use two momentum equations of equilibrium relative to supports (C and A points). Third equation of equilibrium in vertical direction we will use to check the result accuracy.

Note, that in designing the momentum balance equations clockwise rotation will be assumed to be positive and vice versa (see Fig. 2).

					21	

$$
\begin{aligned}
& \sum M_{A}=0=+\frac{q a^{2}}{2}-M-R_{C}(a+b)-q a\left(\frac{a}{2}+b+c\right)+P(a+b+c) \\
& R_{C}=\frac{1}{a+b}\left(-\frac{q a^{2}}{2}+M+q a\left(\frac{a}{2}+b+c\right)-P(a+b+c)\right)=+16,67 \mathrm{kN} \\
& \sum M_{C}=0=-\frac{q c^{2}}{2}-M+R_{A}(a+b)-q a\left(\frac{a}{2}+b\right)+P c \\
& R_{A}=\frac{1}{a+b}\left(+\frac{q c^{2}}{2}+M+q a\left(\frac{a}{2}+b\right)-P c\right)=+13.33 \mathrm{kN} \\
& \sum P_{z}=0=-R_{A}-R_{C}-q c+q a+P=-13.33-16.67-10 \times 2+10 \times 2+30=0 .
\end{aligned}
$$

3. Selecting the arbitrary cross-sections at x-distances from the origin of each potion and writing the equations of shear force and bending moment functions.
In this solution, we will consider the equilibrium of two left-situated parts of the rod (movement from left to right for portions I-I and II-II) and one right-situated part (movement from right to left for portion III-III). This is shown on Fig. 2. Note, that in such selection, the equations of internal forces will be the most simple in shape.

$$
\begin{aligned}
& \mathrm{I}-\mathrm{I} \quad 0<x<a: \\
& Q_{z}^{I}(x)=R_{A}-\left.q x\right|_{x=0}=\left.13.33\right|_{x=2}=13.33-20=-6.67 \mathrm{kN}, \\
& M_{y}^{I}(x)=R_{A} x-\left.\frac{q x^{2}}{2}\right|_{x=0}=\left.0\right|_{x=2}=26.66-20=+6.66 \mathrm{kNm} .
\end{aligned}
$$

Note, that the change of shear force sign within the boundaries of this section predicts the bending moment extreme value, since the derivative of bending moment is equal to shear force:

$$
\frac{d\left(M_{y}^{I}(x)\right)}{d x}=R_{A}-q x=\left|Q_{z}^{I}(x)\right|
$$

Therefore, zero shear force and also zero bending moment derivative represent the point of bending moment extreme value.
To find it, let us determine the coordinate of zero shear force x_{e} and substitute it into bending moment equation.

$$
\begin{aligned}
& Q_{z}^{I}\left(x_{e}\right)=0=R_{A}-q x_{e}=13.33-10 x_{e}, \quad x_{e}=1.33 \mathrm{~m} . \\
& M_{y_{\max }}^{I}=M_{y}^{I}\left(x_{e}\right)=R_{A} x_{e}-\frac{q x_{e}^{2}}{2}=13.33 \times 1.33-\frac{10}{2} \times 1.33^{2}=+8.89 \mathrm{kNm} . \\
& \mathrm{II}-\mathrm{II} \quad 0<x<b: \\
& Q_{z}^{I I}(x)=R_{A}-q a=13.33-20=-6,67 \mathrm{kN} \\
& M_{y}^{I I}(x)=R_{A}(a+x)-q a\left(\frac{a}{2}+x\right)-\left.M\right|_{x=0}=26.66-20-20= \\
& =\left.13.34\right|_{x=4}=79.98-100-20=-40 \mathrm{kNm} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { III - III } \quad 0<x<c: \\
& Q_{z}^{\text {III }}(x)=P-\left.q x\right|_{x=0}=\left.30\right|_{x=2}=30-20=10 \mathrm{kN} \\
& M_{y}^{I I I}(x)=-P x+\left.\frac{q x^{2}}{2}\right|_{x=0}=\left.0\right|_{x=2}=-60+20=-40 \mathrm{kNm} .
\end{aligned}
$$

4. Designing the graphs of shear forces and bending moment distribution. Positive shear forces will be drawn upwards and vice versa. Bending moment graph will be drawn on tensile fibers according to the sign convention mentioned above (see Fig. 1). The graphs are shown on Fig. 2.

Fig. 2
5. Checking the results.

The "abrupts" on the Q_{z} graph are numerically equal to the force and reaction values in the points of these forces application.

The "abrupts" on the M_{y} graph are numerically equal to the concentrated moment values in the points of these moments application.

						23

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

National aerospace university "Kharkiv Aviation Institute"
Department of aircraft strength

Course
Mechanics of materials and structures
HOME PROBLEM 6

Graphs of Shear and Normal Forces and Bending Moment Distribution in Plane Bending of Statically Determinate Frames

Name of student:

Group:
Advisor:

Data of submission:
Mark:

National aerospace university
 "Kharkiv Aviation Institute"
 Department of aircraft strength

Subject: mechanics of materials
Document: home problem
Topic: graphs of shear force and bending moment distribution along the length of a beam in plane bending deformation.
Full name of the student, group

Variant: 1
Complexity: 1

Given: $q=10 \mathrm{kN} / \mathrm{m}, \quad M=30 \mathrm{kNm}, \quad P=40 \mathrm{kN}, \quad l=2 \mathrm{~m}$.

Goal: obtain the equations of shear and normal forces and also bending moment in the cross-sections of a frame and design the graphs of their distribution along the frame portion length.

Full name of the lecturer
signature

Mark:
a) for normal force
b) for shear force

$N_{x}^{m-m}>0$
б) for bending moments

Fig. 1

In normal force calculating, we will use the rule that normal force in the cross-section is numerically equal to algebraic sum of external forces applied to the right or to the left part of the rod after its virtual cutting according to the method of sections. Tensile external force should be substituted into the equation with positive sign and visa versa. This sign convention is shown on Fig. 1.

Shear force in an arbitrary section is equal to the algebraic sum of all external forces projections on the z-axis of cross-section, but lying only on one side of the section (left or right) (see Fig. 1).

The bending moment in a section is equal to the sum of moments, in relevance to the transverse axis in the section, of all external forces applied to one side of the section (left or right) (see Fig. 1).

$Q_{z}^{m-m}<0$
$Q_{z}^{m-m}>0$
Comment: in the case when the curvature of deflected beam curve is coincident with z-axis direction, corresponding component of bending moment equation will be assumed to be positive and vice versa. The graph of bending moment will be designed on tensile fibers of the beam since position of tensile fiber is clear in both situations shown on Fig. 1

					25	

Solution

1. Drawing the frame in scale and applying the support reactions in arbitrary directions.

Fig. 2
2. Calculating the reactions in supports $R_{A}^{h}, R_{A}^{v}, M_{R}$.

Since the reactions actual directions are unknown we will direct the reactions arbitrary (see Fig. 2). The reaction positive sign from future calculating will mean that the reaction original direction is coincident with actual one and vice versa. In reactions calculating, we will use two momentum equations of equilibrium (relative to A and C points) and also equation of force equilibrium in vertical direction.
Note, that in designing the momentum equations of equilibrium clockwise rotation will be assumed to be negative and vice versa.
(1) $\sum M_{A}=-q l \frac{l}{2}-M-P l-P l+q l \frac{l}{2}-M_{R}=0$,

$$
M_{R}=-q \frac{l^{2}}{2}-M-2 P l+\frac{q l^{2}}{2}=30-80-80=-190 \mathrm{kNm} .
$$

"Minus" sign of M_{R} moment illustrates that its actual direction is opposite to preliminary assumed i.e. M_{R} is directed counterclockwise. It is shown on Fig. 2.
(2)

$$
\begin{aligned}
& \sum M_{D}=-q l \frac{l}{2}+R_{A}^{h} l-M+q l\left(l+\frac{l}{2}\right)-2 P l+M_{R}=0, \\
& R_{A}^{h}=\frac{\frac{q l^{2}}{2}+M-q l\left(l+\frac{l}{2}\right)+2 P l-M_{R}}{l}=\frac{20+30-60+160-190}{2}=-20 \mathrm{kN} .
\end{aligned}
$$

					26	

"Minus" sign of R_{A}^{h} reaction illustrates that its actual direction is opposite to preliminary assumed i.e. R_{A}^{h} is directed to left. This is shown on Fig. 2.
(3) $\sum P_{z}=q l-R_{A}^{v}=0, \quad R_{A}^{v}=q l=10 \times 2=+20 \mathrm{kN}$.
3. Selecting the arbitrary cross-sections at x-distances from the origin of each potion and writing the equations of normal and shear forces and also bending moment functions.
In this solution, the portion balance will be considered to get the most simple equations of internal forces: the portions I-I and II-II will be considered from D point (motion from D to B point), potion III-III will be considered upward from E point and last portion will be considered from A point to right. This is shown on Fig. 2.
$I-I \quad(0<x<l)$
$N_{x}^{I}(x)=0 \mathrm{kN}$,
$Q_{z}^{I}(x)=-\left.q x\right|_{x=0}=\left.0\right|_{x=2}=-20 \mathrm{kN}$,
$M_{z}^{I}(x)=-\left.\frac{q x^{2}}{2}\right|_{x=0}=\left.0\right|_{x=2}=-20 \mathrm{kNm}$.
II - II $\quad(0<x<l)$
$N_{x}^{I I}(x)=-q l=-20 \mathrm{kN}$,
$Q_{z}^{I I}(x)=+P=40 \mathrm{kN}$,
$M_{y}^{I I}(x)=-\frac{q l^{2}}{2}+\left.P x\right|_{x=0}=-\left.20\right|_{x=2}=60 \mathrm{kNm}$.
III - III $\quad(0<x<l)$
$N_{x}^{I I I}(x)=0 \mathrm{kN}$,
$Q_{z}^{I I I}(x)=+P-\left.q x\right|_{x=0}=\left.40\right|_{x=2}=20 \mathrm{kN}$,
$M_{y}^{I I I}(x)=-P x+\left.\frac{q x^{2}}{2}\right|_{x=0}=\left.0\right|_{x=2}=-80+20=-60 \mathrm{kNm}$.
$I V-I V, \quad(0<x<l)$
$N_{x}^{I V}(x)=+R_{A}^{h}=20 \mathrm{kN}$,
$Q_{z}^{I V}(x)=+R_{A}^{v}=20 \mathrm{kN}$,
$M_{y}^{I V}(x)=R_{A}^{v} x-\left.M_{R}\right|_{x=0}=-\left.190\right|_{x=2}=40-190=-150 \mathrm{kNm}$.
4. Designing the graphs of normal and shear forces and also bending moment distribution. Bending moment graph will be drawn on tensile fibers according to the sign convention mentioned above (see Fig. 1). The graphs are shown on Fig. 3.

					27	

Fig. 3

5. Checking the balance of two infinitely little elements of the frame.

Fig. 4

