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LECTURE 6 Plane Bending Deformation. Diagrams of Internal Forces
(Continued)

1 Construction of Bending Moment and Shearing Force Diagrams for Two
Supported Beams

In this mode of loading, first of all, we should determine the support reactions.
Let us consider the method in following example.

Example 1 Internal forces induced by concentrated force

b Given: F, a, b.
Y -+ R
4 41 s |l T B RD.: Q(x), My(x).
A Y Y :A: Let us find the support reactions Rg and
X > - X - - -
e e R from the equations of equilibrium of the
0,(x),N beam:
P b
@ a+b >Mp=0—->Rg(a+b)-Fa=0, (1)
a
_F i
a+b ¢ R. — Fa @)
M ,(x), Nm B a+b’

+ ZMB =0—>

Fab Ra(a+b)-Fb=0, (3)
a+b
Fb
Fig. 1 RA=m- (4)
Let us check the support reactions
Fb Fa

F, =0, ——-F+——=0. 5
2.F: a+b a+b ©)

The result is true.

Let us divide the beam into portions and write the equations of shearing forces
and bending moments for an arbitrary cross-sections of two portions: I-I1 and 11-11. From
the conditions of equilibrium of the left (I-1) or right (1I-11) portion of the mentally cut
rod it follows that for portion | at a distance x from support A internal forces are
described by the equations.
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2 V. DEMENKO  MECHANICS OF MATERIALS 2020

_Fb
a+b’

M;,(x):RAx:—x Fba

|
% ()= Ra = aro 0" gy ©

Portion I1. An arbitrary section Il is situated at a distance x within the limits

Fa
0<x<b: Il (x)=—Rg = ——= 7
X z (X) B 24D (7)

I Fa Fab
My (x):RBx:—a+bx|X:0: |X=b:—a+b' (8)

Thus, in each portion of the beam, the force Q, is constant in value and is positive for

portion | and negative for portion II.
The moment depends linearly on x; it increases in portion | from 0 to
Fab/(a+b) and increases from zero to this value in portion Il. The diagrams of Q,(x)

and My (x) can now be created using results of these calculations.
It should be noted that the diagram of shearing forces has an abrupt in the point

of application of specified external force, which is equal to the magnitude of the force.
For instance, the Q,(x) diagram has three abrupts corresponding to the forces

Ra, F, Rg. There are no any abrupt in the diagram of bending moments.

Ry «— M Rp Example 2 Internal forces
AT I n Bl induced by concentrated moment
A y y 4 Given: M, a,b.

X I= > iy al R.D.: Q,(X), My(x).
"= [;'Z From the equations of equilibrium, the
- a | >
B reactions are
M
QZ (.X), N a+b M
Rax=Rg=——, 9
A=Rg=—r ©)
(+ since
ZMAIO; RB(a-l-b)—M =0,
b M
-M = =
ih Rg Y Rg =Rp. (10)
M ,(x),Nm m Equations of internal forces:

M a Portionl: 0<x<a
a+b

M
Fig. 2 Q (X)=RA:m, (11)
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I Mx Ma
M, (X)=RaxX=—— = =, 12
y( ) A a+bly_g |X=a a+b (12)

Portion Il: 0<x<b
M
Z“(x):+RB:+—a+b, (13)
T Mx Mb

M X)=—RpX=——— = = 14
y (%) B a+bl,_ - a+b (14)

Note: point of an external moment application, the bending moment diagram

has “jump” (abrupt). It is equal to the magnitude of the active moment applied in this

point.
Example 3 Internal forces
Ry ! Rp . oy
q } induced by uniformly distributed load
m&uuyuuuuum Given: g,
X R.D.2 Q;(X), My(X).
|
- 1z ! -~ Let us determine the reactions of supports
0,(x),N A and B from conditions of equilibrium:
ql
il gl
2 RA = RB = 3 (15)
< q! : :
) ) Equations of internal forces:
ql - .
M, (x), Nm e In portion1 (0<x<I):
n | ql ql ql
X)=—-—0X =—| =——, (16
Fig. 3
2 2
Ly Al ax™ _al _
My(x)_Ex—7 _O|X:|/2_? =0. (17)
x=0 x=I
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The shearing force decreases linearly from %I to —%I and the bending moment varies

along the beam length non-linearly and attains the maximum value in the beam mid-
section.

Example 4 Internal forces induced by linearly distributed load

Given: gp, |.
Ry 4 R
Aﬁmﬂm; [
y Calculation of the support reactions:
A ol 1
| Ma=0, Rgl ——=1=0, (18
. ;= X - Z A B 2 3 (18)
q_[QZ(x) vz gl
3 RB_E’ (19)
WULM@M i a2
I‘l/ﬁzxe 16 > Mg =0, Rp "5 3 =0, (20)
My(x)i q12/9\@ |
Rp= (21)
A )
n 3
Checking:
Fig. 4
g gl ql
F,=0, —+——-—=0. (22
2 st37 3 (22)
The equations of Q,(x) and My (x) are as follows:
2 2
! gx® _ ql  ox ql ql
X)=—Rg+—=—"F"+—"—+| =—"F =—/7; 23
% ()=Re*+5r =5+ o 6Bha 3 (@3)

Extreme value of bending moment is calculated substituting into its equation
corresponding coordinate of the point. The last one is determined equating to zero the
derivative of bending moment function which is described by shear force (check if you
disagree):

2
Qf (1) =~ F + e =05 = (24)

2
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3 3 2
(x)=Rgx-T Ay & g =0 _ =3 (25)

M, - =T
6l 6 6| X=X~ 93

y

2 Relationships Between Bending Moment My, Shearing Force Q, and
Distributed Load Intensity g(x)

Let a rod be fixed in arbitrary manner and subjected to a distributed load of
intensity q=gq(x) in general case. There are other loads applied to the beam.
The direction adopted for g is considered positive (see Fig. 5).

Isolate an element of length dx from the rod and apply to both its boundaries the

moments M, and My +dM, and also shearing forces Q, and Q, +dQ, .

The load g may be considered to be uniformly distributed within the infinitesimally
small segment dx (see Fig. 6).

Equate to zero the sum of the projections of

z
'ww) z(ic)“ I 1 all forces on a vertical axis z:
My A A
Q, +q(x)dx—Q, —dQ, =0. (26)
! My +dMy z ( ) z 7
(- ________________________ Il Making simplifications, we obtain
A
dQ, (x)
— =4a(x). 27
Y o =400 27)
Ozl dx 0.+d0. |
) ] Equate to zero the sum of the moments with

Fig. 6 respect a transverse axis y (point A)

dx
My+QZ-dx+q(x)dx?—My—dMy:O. (28)
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Making simplifications and rejecting the small quantity of higher order, we obtain

dMy(x)

dx =Q; (X) : (29)

Thus the shearing force in fact represents the derivative of the bending
moment with respect to the length of the rod. This conclusion was proved in the
example mentioned above.

The derivative of the shearing force equals to the intensity of external
distributed load g.

Example 5 General case of cantilever beam loading

I I I Given: a=2m, b=1Im, c¢c=3m,

v Mp =160 kNm
e — F =50kN, q=40kNm,
A B C DI T M =60kNm.
R=30 kN
(PR ¢ R.D.: Q;(), My (x)-?
F z z N -
X X X Equations of internal forces in an
| 11 11 . .
arbitrary  cross-sections of the
50 i
portions:
0. (x), kN
I-1 O
%, SIS <x<a
~1 130 30 I
i 160 Q; (X)=+F —0X|x=0="50|y=2 =
——30kN,
i 70 | X
; My (x):+Fx—qx§|X:0:
5 g M ,(x),kN
: e x), KNm
e Y =O|X:2 =20kNm.
31.25 20 |
My max =7
|
Q|="g =F - Q(%)=0
dM (x
—(e):F—qxe :O—>xe:E:1.25m.
dx q
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40(1.25)°

2
M! =My (%)= F(xe)—@ ~50(1.25) - = 62.5-31.25=31.25 kNm.

I-11 O<x<b
W (x) =+F —ga=-30kN,

v—0="50%(2+0)—40x 2(1) = 20|,y = —10kNmM.

M, ! (x):F(a+x)—qa(%+xj
=111 O0<x<b
M (x)=F —ga=-30kN,
M, (x):F(a+b+x)—qa(%+b+xj—M |x_0=—10| s =—70kNm.
Example 6 General case of two supported beam loading

I v I I Given: g=20KNm, F =50KkN,

Re=dO MRy =70kN M =130kNm, a=3m,
F A
) 2 b=c=d=1m.
ATa P A R.D.: Q;(x), My(x)-?
z z
it Al ~ & 1) Calculation of reactions Ry, Rp:
X
11 v 1 I > Mp=0=+M+F(a+b)+
40 0.(x),kN
+qag—RB(a+b+c+d),
ANIEEEEEE
x, | 20 %f %
«%»Me( 5) N 20 Rg =+70kN.
X), KNm 60
’ v o The plus sign means coincidence of
+
WO Rg actual direction with originally
@
4030 70 selected.

Fig. 8
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> Mg =0=+M —F(c+d)—qa(%+b+c+dj+ Ra(a+b+c+d),

Rp = +40kN.

Checking: > F, =0=—Rp—Rg +F +ga=-40-70+50+20x3, i.e. the reactions are
determined correctly.

2) Equations of internal forces in an arbitrary cross-sections of corresponding portions:

I-1 O<x<l
Q; (x)=—-Rg =-70kN,
My (x) = +RgX|x=0= 0| x—1= 70kNm.
-1 O0<x<1
1 (x)=—Rg =—70kN,
My (x)=+Rg (d +X)— M| _o=60]| ;=10kNm.
-1 0<x<1

2 (X)=Ra —0X|x=0=40|x_3=—20kNm,

i

11 R 40

7 (%)=Ra—0%=0->x% = quﬁzzm’
1l X, 2

y
IV-IV 0O0<x<l1

v (x)=Ra—0ga=-20kN,

M y|V (x)=+Ra(a+x)— qa(% + Xj|X=0: 30| x—1=10kNm.
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Example 7 General case of two supported beam loading

Rorig
I = I IV (I
M| M Rférf
— -
) .
a b c d
A, A"
“)_c;‘_ vZ vz B ZVF
| | 11 1V 111
Y réct
N 100
0-(x), P
|
< 27.5
40
87.5 87.5
M, (x), kNm 240
a0 675
Aé 75\ i
80
Fig. 9

16

~20=>+Ra(4)-40(1+1+3)

Given: g=20KkN/m, F =100KkN,

M =60kNm, a=2m, b=1m, c¢=3m,
d=4m.
R.D.2 Q;(X), My (x)-?

1) Calculation of reactions Ra, Rp:

> Mp=0=-R39(b+c)+F (b+c+d)—
—q(c+d)(%+bj—M +2M —qagz

:_RB(4)+1oo(s)_20(7)G+1)_

~60+120-20(2), —Rg4=-190,

RS — RE°t - % — +47.5kN.

The plus sign means coincidence of Rg actual

direction with originally selected.
(b) > Mg=0=+Fd +2M —M +
+qc%—qd%+ RO" (b+c)—qa(%+b+cj:

=100(4)+2(60)—60+20§—

= RY"9(4)+190, R = 47.5kN.

The minus sign means non-coincidence of Rg actual direction with originally selected.

Thus, original direction of Rp must be changed on opposite.

(c) Ch

ecking: S F, =0=+R3% — Rgrig +F+ga—q(c+d)=0, i.e. the reactions are

determined correctly.
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2) Equations of internal forces in an arbitrary cross-sections of corresponding portions:
I-l O<x<a
X
Q; (X)=-0X|x=0=0|xep =—40kN, My (x)= qu|XZO: 0|y—p = —40kNm.
-1 O<x<b

2 () =08~ Ragctual =-87.5kN,
M 3',' (x)= —qa(% + x) — Raactual X + 2M | y—g=+80| 41 =—7.5kNm.
-1 0<x<d
M (x) = +F — x| y_o=+100kN |4 = +20kN,
M (x):—Fx+qxg|X=0:O|X:4 = —240kNm.

IV-IV 0O<x<c

2V (x)=+F —q(d +x) - Rg| y_o=—27.5kN | ,_3 = —87.5kN,

MY (x)=—F(d +x)+Rgx+q(d + x)x(d +§j|xzoz —~240kN |y_3 = —67.5kNm.

3 Construction of Internal Force Diagrams for Statically Determinated Frames

By a bar system is meant any structure consisting of rod-shaped elements. If the
elements of a structure act primarily in tension or compression, the bar system is called
a truss. If the elements of a bar system are primarily in bending or torsion, the system
is called a frame. We will consider plane frames.

By a statically determinate system is meant a system for which all the reactions
of the supports can be determined by means of equations of equilibrium and the internal

forces at any cross section can also be found by the method of sections.
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Given: F, a, b.

11
R.D.: Ny(x), Q;(x), My(x) functions and
b |y
their graphs.
- 2 Solution
v 1T Equations of internal forces in two portions
a .
- y are:
1 ! I I-l O<x<a
X
| |
< F N(x=0 Q! (x)=0,
Fig. 10 M)',(x)z—Fx|X:0 =0|x:a =—Fa,
-1 O<x<b
N'(x)=-F, Q' (x)=0, M} (x)=-Fa.
Corresponding graphs are:
N(x), kN
# 0 (x), kN
F
EO=
F
M ,(x), kKNm
Fa
Fa
Fig. 11
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Example 9 Calculation of internal forces in plane frame
Given: g=20kN/m, I =3m.

Ry
F hr R.D.: Ny(X), Q(x), My(x).
A
At first let us determine the reactions
y X
I 11 i
= A B:
| 7 3 RY (original) In supports A and
Iv, ] |11} % a) ZMBZO’
h
Y B Rp-6—20x3x15=0, Ry =+15kN;
1A
b) > F =0,
: RS = gb =+60kN
B = =+ .
zvIl Rp(actual)
C) ZM A= 0,
Fig. 12

RYM9.6+60x3—-20x3x15=0,

Rg\r,ig =—15kN (actual direction of RE! is opposite to original).
Let us write the equations of the internal forces:
N «(x)=0;
N, (x)=+Rp = +15kN;
N () =+Rgn = +60kN;
Q; (x)=Ra =15kN;
T(x)= ~0X|,_o =0|,_, =—60kN;
M (x)=+RES =15kN;

M I

y(X)=Ra-X,_o =0, _, =45kNm;

M (x)=R -|—ﬁ — 445| . =—45kNm:
Y(X)_ A 2 =+ |X=3_ m;
x=0

My (x)=-RES x|, _o=0|, 5 =—45kNm.
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Using this equations the bending moment diagram and the diagrams of normal

and shearing forces may be constructed:

Ny (x), kN Q;(x), kN My(x), KNm
6 P 45
IS

60 15 45

om 60 L2 & Zm

e

15
45
Fig. 15
Checking the results, i.e. the equilibrium of the frame angles.
45 compressed 15
> / fibers 60 T45
________ L !
15 - l -+
_______ = N N tensile
S _ | + fibers
+t++++ 4+ | |- s
+ |z Il I R o
- +H | |Z e R
tensile + |- - | |[+++++++
+ — - - 60
fibers n | - 1 45 =t = — ——
i _ T ————————— 15
l -
y15

Fig. 16

Example 10 Calculation of internal forces in plane frame
Given: q=40kN/m, F =50kN, M =40kNm, a=2m, b=4m, c=3m.

R.D.: Ny(x), Q,(X), My(x)—?

1) Calculation of support reactions:
@ YMp=0=-M-M + Fa—qa%+ qbg+ RYMIp —» RYMY —_65kN. The minus
sign means non-coincidence of Rg, actual direction with originally selected. Thus,
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original direction of Rg, must be changed on opposite.

(b) > F,=0=-F +R,,‘§rig ~RES +q(a+b)—>Rp=—-125kN, i.e. actual direction of

R is upwards.

(¢) D> F=0=Rgn — F —> Ry, =+50kN (right directed).

| M . v
/\ Vs
\ / \ \ /
x£ ;ZI I[I) ~
z
P S \¥ L 111 01
Ract act
y AAC X RBVA M
A F B T
. | act
Rpp
ROI”ig Rorig
A BV
Fig. 17
Xe :5:5—0:1.25m.
g 40

My (%e) =My max = Fe —%qxez = +31.25kNm.
-1l O<x<c
Ny (X)=—-Rp =—-125kN,
M} (X) = =FX| x—0=0| x—3 = ~150kNm.
-1l 0<x<cC
Ny (x)=—Rgy =—65kN,

My (x) = +RgpX + M | 3_q= 40| x_3 = +190kNm.

W (x)=+F =+50kN,

2) Equations of internal forces
in an arbitrary cross-sections of
the portions (see Fig. 17):

I-1 O<x<a
N)'((x)zo,
Q (x)=
:50|X:2 =—-30kN,

+F —0X|x—q =

X
M;,(x): Fx—qu|X=0 =
=0|y_p =100—80=+20kNm,

QzI (Xe):F_quZO’

1 (x) = —Rgp, =-50kN,
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IV-IV 0O<x<c

Ny (x)=+Rgp = +50kN, W (x) = —Rgy + 9X|x_g = —65| _s = 95kN,

MY (x)= —qx§+ RgyX+M + Rgn€|x_0=190|y_4 =130kNm.

Y, t Ract 65
2" (%) =—RBy + 0% =0—>xo =—BL ==—=1.625m,
q 40
2 2
1.625
My (Xe) =M ynax = —q%+ REx, + M +RE&c = _10(4829)°" 65(1.625)+ 40+
+50x 3=282.4kKNm.
95\
Q. (x), kN
50 Nx (X), kN 50 X,
+
0 >
&
xe
~ 30
65
S o Eom Eo=
125 65 50 50
Fig. 18 Fig. 19
M ,(x), kKNm
150 190
—- :
LN {190
3125 130 ‘
2824 &
3) Checking the results i.e. an equilibrium of
40
the rods connection areas (see Figs 21-22).
Fig. 20
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— 3 compressed

(¥,
(e

/ fibers
__________ L_ 30 40 -
50 . . N /\ ’ 50
NRE . ﬁ ]
tH+++++++] |-

65 + - ++++| WJF +|Yo5
<~ / I ‘ - T ‘ H —
190 tensile N ‘ - 20 an 130

- +
fibers jr - 190 * e
HERE ? 50 *150
* 125
65

Fig. 21 Fig. 22

4 Construction of the Q,(x) and My(x) Diagrams for Curvilinear Beams

Given: R, F.
Yz R.D: Ny(a), Q;(a), My(a).
x g Theforce F can be resolved along the x and z
e PraY
' axes into the components Fcosa and
V :
F, Fsina.
Fig. 23 F=Fsina, F, =Fcosa,
Ny (0:) =—F=-Fsin a|a:O - 0|a:72'/2 - _F|a=72' =0,
Q;(a)=+F,=Fcos a| _,= F|a:7z/2 =0, =-F,
My (a)=Fh=FRsing| _,= 0|0(:7T/2 =FR| __=0.
F
FR
0 My(x) 0
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Example 11 Calculation of internal forces in curvilinear frame

Given: M, F, R.
R.D.: Ny(a), Q,(a), My(a).

Solution
Equations of internal forces are:

I-1 O<a<rxl/2

N'(2)=0; Q}(a)=0;
Fig. 25 Ml(a):—M.

-1l O<a<xl/2

N" (@) =Psina| _ =0 P,

a=rl2 "~
3 (o) =—Pcosa|y—0=—P|g=r/2 =0,
My (@) ==M +PRsina|4_0=-M|g4r/2=-M +PR.

The graphs of internal forces are:

N(x), kN 0. (x), kN My(x), kNm

e

P M-PR M

Fig. 26
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Example 12 Calculation of internal forces in plane frames with curvilinear

elements
.y Given: M =40kHm, g=10kN/m, a=1m.
X
11 Y1 RD.: Ny, Q,, My functions and their
y Kz <+
11 X graphs.
AN A 11
A g o A .
> a z VA | Solution
> T a _ .
v > 1V, I X 1) Calculation of support reactions:
261 i ‘ Y
; _A_ ZFXZO —> an—RAH =0—>
» )C
> —> RAH =20 kN,
> R
> R B 2
L Ar > Ma(F)=0—>Rg-2a—M -2ga“=0—
4 A
— Rg =30kN,
Ryp
ZFZ ZO—)RB—RA\/ =0—> RAV =30kN.
Fig. 27

2) Equations of internal forces in an
arbitrary cross-sections of corresponding portions:
I-l 0<x<a
Ny (x)=-Rg =-30kN, Q; (x)=0, My (x)=0.
-1l 0<a<x/2

Ny (a)=—Rg cos al,_o=-30, 0,

=r/2 -

I (a)=-Rgsina| _,= 0|Ol:7[/2 — _30kN,

M} (a)=Rga(l-cosa) 0l = Rga = 30kNm.

a=0 -

-1l 0<a<7x/2

a=r/2

N (a)=Rgsinal,_, =0],_, , =30kN,

Q)',” (a)=-Rgcos 0‘|a=o =-30) 0,

a=r/2 "
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My (x)=Rga(l+sina)~M]|,_o=-10,__, =20kNm.
IV-IV 0<a<2a

N (x)=Ray =30kN, Q" (x)=Ran —ax,_o=20], , =0,

)\ qX2
My (x):RAHx—T =0[,_, =20kNm.
x=0
10
i 2\
N(x), kN — 20
@ £ =
QZ(x)9 kN E
30 | My (x), kNm
30 20 3
Fig. 28

9/8/2020 2:12:30 PMW:\+MEXAHNKA MATEPVANOB W\++HMKI AHI\082 LECTURES 2020\06 Plane Bending Deformation. Diagrams of Internal Forces (Continued).doc



MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

National aerospace university “Kharkiv Aviation Institute”

Department of aircraft strength

Course
Mechanics of materials and structures

HOME PROBLEM 5

Graphs of Shear Force and Bending Moment Distribution in Plane Bending (Two-
Supported Beams)

Name of student:
Group:

Advisor:

Data of submission:

Mark:




National aerospace university

“Kharkiv Aviation Institute” Shear force in a prismatic rod is
Department of aircraft strength equal to the algebraic sum of all
Subject: mechanics of materials . .
Document: home problem external forces projections on the

Topic: graphs of shear force and bending moment distribution along the length CrOSS'SeCtion |y|ng on one Side Of the

of a beam in plane bending deformation.

Full name of the student, group SeCtion (Ieﬂ or rlght)
The bending moment at a section

Variant: 1 . Complecips is equal to the sum of moments, in
- P relevance to the transverse axis in the
q q section, of all external forces applied
-X;., Yyl XZ ' {y> »  x |to one side of the section (left or
right).
L |
a b c
| |

Given: ¢ = 10 kN/m, M=20kNm, P=30kN,a=2m,b=4m,c=2m.

Goal: obtain the equations of shear force and bending moment in the cross-
sections of a beam and design the graphs of their distribution along the beam

length.
Full name of the lecturer signature
Mark:
Solution
1. Accepting the sign conventions in internal forces calculating.
(a) for shear force (b) for bending moment
m m m m
PA P M M
M M
d 4 T+
+++ +1 ++ +t Yy
z
Pv z vP zZ zZ
m m m m
— — m—m m-—m
m-m .o Mo My~ >0 My <0
Fig. 1

2. Calculating the reactions in supports Ry and Rg (see Fig. 2). Since their actual

directions are unknown we will direct the reactions arbitrary, for example, upwards. The
reaction positive sign from future calculating will mean that the reaction original direction
is coincident with actual one and vice versa. For the reactions calculating we will use two
momentum equations of equilibrium relative to supports (C and A points). Third equation
of equilibrium in vertical direction we will use to check the result accuracy.

Note, that in designing the momentum balance equations clockwise rotation will be
assumed to be positive and vice versa (see Fig. 2).
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> Mp=0= +q<’;1 M—RC(a+b)—qa(%+b+c)+P(a+b+c),

2
ga a
=——| —+M+qga(=+b+c)-P(a+b+c) |[=+16,67 KN .
Rc a+b£ 5 q(2 )—P( )]

2
zmczoz—%—m +RA(a+b)—qa(g+b)+Pc,

1 [ qc?
Ra = +—+M +qa(—+b) Pc |=+13.33kN.
a+b 2

P,=0=—Rp—-Res —Qc+ga+P=-13.33-16.67/-10x2+10x2+30=0.
Z A

3. Selecting the arbitrary cross-sections at x-distances from the origin of each potion and
writing the equations of shear force and bending moment functions.

In this solution, we will consider the equilibrium of two left-situated parts of the rod
(movement from left to right for portions I-1 and II-11) and one right-situated part
(movement from right to left for portion I11-111). This is shown on Fig. 2. Note, that in such
selection, the equations of internal forces will be the most simple in shape.

-1 O<x<a:
Q) (x) =Rp — X |y_0=13.33|,_,=13.33—20=—6.67 kN,
2
M1 (x) = RAX—% leeo=0ly_o= 26.66 — 20 = +6.66 kNm.
Note, that the change of shear force sign within the boundaries of this section predicts the

bending moment extreme value, since the derivative of bending moment is equal to shear
force:

d(My(x) A
i Ra—0x=|Q; (X)‘-

Therefore, zero shear force and also zero bending moment derivative represent the point of
bending moment extreme value.
To find it, let us determine the coordinate of zero shear force X, and substitute it into

bending moment equation.
Q) (%) =0=Rp —Oxe =13.33-10%,, X, =1.33m.

| ! P 10 2
M =My (Xe) =RaXe ——+ 5 =13.33x 133_?X133 =+8.89 kNm.

Ymax

-1l O<x<b:
1 (x) =R, —ga=13.33— 20= 6,67 kN,

a
My (X) = Ra(a+x) —qa(§+ xj— M |y_o=26.66 — 20— 20 =
=13.34|,_4=79.98—100— 20 =—40 kNm.
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M;," (X)=—Px+

O<x<c:
M (%) = P — X |y_p=30,p=30 —20=10 kN,

2

q>2< ly=0=01y=p=—60+20=-40 KNm.

4. Designing the graphs of shear forces and bending moment distribution. Positive shear
forces will be drawn upwards and vice versa. Bending moment graph will be drawn on
tensile fibers according to the sign convention mentioned above (see Fig. 1). The graphs

are shown on Fig. 2.

Ry

13.3

5. Checking the results.
The “abrupts” on the Q, graph are numerically equal to the force and reaction values

in the points of these forces application.
The “abrupts” on the My graph are numerically equal to the concentrated moment

Fig. 2

values in the points of these moments application.

M | Roh I
q
' ! 'B C L A A A HD y X
P
— X X
1 1l z
i > i b > CZ >
130
//
///
m Qilil
5 0. (x), kN
e 40
i //// \\\\
D—b: // N
I /////// \\
| A
13133 L A\
: N —
§ M ,(x), kKNm
2 666
8.89
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Topic: graphs of shear force and bending moment distribution along the length
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Full name of the student, group

Variant: 1 Complexity: 1
q
P ) X
D e
IA B
M
q
—y ]‘
Given: ¢ = 10 kN/m, M=30kNm, P=40kN, /=2m.

Goal: obtain the equations of shear and normal forces and also bending
moment in the cross-sections of a frame and design the graphs of their

distribution along the frame portion length.

signature

b) for shear force
m

Full name of the lecturer
Mark:
a) for normal force
m m
P Y P P Y
B s —— — >
z z
m m
Ny ™ >0 Ny~ <0
0) for bending moments
m m
M M
M
+ 1+
— e
+++ Iy [ ++ ,\%y%
z z
m m
My >0 My M <0

Fig. 1

In normal force calculating, we
will use the rule that normal force in
the cross-section is numerically equal
to algebraic sum of external forces
applied to the right or to the left part
of the rod after its virtual cutting
according to the method of sections.
Tensile external force should be
substituted into the equation with
positive sign and visa versa. This
sign convention is shown on Fig. 1.

Shear force in an arbitrary section
Is equal to the algebraic sum of all
external forces projections on the
z-axis of cross-section, but lying only
on one side of the section (left or
right) (see Fig. 1).

The bending moment in a section
is equal to the sum of moments, in
relevance to the transverse axis in the
section, of all external forces applied
to one side of the section (left or
right) (see Fig. 1).

m
PA P)
y Y
13 : Yp
m m
nMm<o M0
Comment: in the case when the

curvature of deflected beam curve is
coincident with z-axis direction,
corresponding component of bending
moment equation will be assumed to
be positive and vice versa. The graph
of bending moment will be designed
on tensile fibers of the beam since
position of tensile fiber is clear in
both situations shown on Fig. 1.
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Solution
1. Drawing the frame in scale and applying the support reactions in arbitrary directions.

I
q
Y VY Y|Y VY V Y P Y X
>
D X C
X
I z
AN | II z
h Mpg
Rﬁ C(
- 4
X |IV
V4
zZ
11T > I
X =
P
el
E

Fig. 2

2. Calculating the reactions in supports RR, RA, Mg.
Since the reactions actual directions are unknown we will direct the reactions arbitrary
(see Fig. 2). The reaction positive sign from future calculating will mean that the reaction
original direction is coincident with actual one and vice versa. In reactions calculating, we
will use two momentum equations of equilibrium (relative to A and C points) and also
equation of force equilibrium in vertical direction.
Note, that in designing the momentum equations of equilibrium clockwise rotation will be
assumed to be negative and vice versa.
(1) ZMA:—qIIE—M —PI-PI +qI12—MR =0,
1 ql®
Mg =—qE— M —2PI +7:3O—80—80=—190 KNm.

"Minus" sign of Mg moment illustrates that its actual direction is opposite to preliminary
assumed i.e. Mg is directed counterclockwise. It is shown on Fig. 2.

) ZMD:—qIIE+R2I—M +q|[|+|5j—2PI+MR:O,

2
a” - ! _
g M q'(”z)ﬂpl MR 20+30-60+160-190

| 2

R = =20 kN.
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"Minus" sign of Rg reaction illustrates that its actual direction is opposite to preliminary
assumed i.e. Rg is directed to left. This is shown on Fig. 2.
(3) > P,=ql-RA=0, RA=ql=10x2=+20kN.

3. Selecting the arbitrary cross-sections at x-distances from the origin of each potion and
writing the equations of normal and shear forces and also bending moment functions.

In this solution, the portion balance will be considered to get the most simple equations of
internal forces: the portions I-1 and Il-11 will be considered from D point (motion from D
to B point), potion I11-111 will be considered upward from E point and last portion will be
considered from A point to right. This is shown on Fig. 2.

-1 (0<x<l)

Nx () =0 kN,

Q) (X) =~ |y—=Oly_p=—20 kN,
2

X
M3 () = =~ [x0=0lx=p=-20 kNm.

-1 (0<x<l)
NJ! (x) =—qgl =20 kN,
W (x)=+P =40 kN,

|2
MY (x) = —q? + PX|y_o=—20]_p=60 kNm.

-1 (0<x<l)
NI (x)=0 kN,

" (X) =+P —0x|x—0=40|x—»=20 kN,

1 G
My (X)=—PX+7IX:0=0|X:2:—80+20:—60 KNm.

IV-IV, (O<x<lI)
N4V (x) =+R"} =20 kN,
WV (x)=+RY =20 kN,
MY (X) = RYX—Mp |,—o=—190|,_p= 40190 = ~150 kNm.
4. Designing the graphs of normal and shear forces and also bending moment distribution.

Bending moment graph will be drawn on tensile fibers according to the sign convention
mentioned above (see Fig. 1). The graphs are shown on Fig. 3.
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40
Ny (X), kN Q, (X), kN
@ 20
7| 20
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M (x), kNm

Fig. 3
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5. Checking the balance of two infinitely little elements of the frame.

20
~
+ 4+ + 4+ Ht
40
y
20

4+ + 4+ + A+ H

40 A

20

20

Aa‘
(e}

+ 4+ ++ + 4+
2
(a»)

+ 4+ + 4+

+ o+t

T20 ,
—_——

Fig. 4
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