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LECTURE 8   Two-dimensional (Plane) Stress State. Graphical Method of 
Stress State Analysis 

1   Two-Dimensional (Plane) Stress State Definition and Examples 

A two-dimensional (plane) state of stress exists at a point of deformable solid, 

when the stresses are independent of one of the three coordinate axis. It means that the 

general feature of this type of stress state is the presence of one zero principal plane. 

Examples include the stresses arising on inclined sections of an axially loaded rod 

(Fig. 1), a shaft in torsion (Fig. 2), a beam at combined loading (Fig. 3), thin-walled 

vessel under internal pressure p (Fig. 4), aircraft wind skin (Fig. 5), scoop box (Fig. 6). 

 

Fig. 1   Two-dimensional stresses on inclined section in axial loading 

    

Fig. 2   Plane stress state at surface points of the shaft in torsion 

    

Fig. 3   Plane stress state at the surface point of a bar under combined loading 
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Fig. 4   Element in plane biaxial stress state in pressure vessel 

 

 

 

Fig. 5   Two-dimensional stress state in the point of 

wing skin (stresses, normal to skin surface, are zero) 

Fig. 6   Plane stress state in the point of scoop 

box 

Two-dimensional problems are of two 

classes: plane stress and plane strain. The 

condition that occurs in a thin plate 

subjected to loading uniformly distributed 

over the thickness and parallel to the plane 

of plate typifies the state of plane stress 

(plane stressed state, plane stress) (Fig. 7). 

Because the plate is thin, the stress-

distribution may be closely approximated by assuming that two-dimensional stress 

 

Fig.7   Thin plane subjected to plane stress  
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components do not vary throughout the thickness and the other components are zero. 

Another case of plane stress exists on the free surface of a structural or machine 

component (see Figs. 2, 3, 5, 6). 

To explain plane stress, we will consider the stress element shown in Fig. 8. This 

element is infinitesimal in size and can be sketched either as a cube or as a rectangular 

parallelepiped. 

 

Fig. 8   Elements in plane stress: (a) three-dimensional view of an element oriented to the x , 

y , z  axes, (b) two-dimensional view of the same element, and (c) two-dimensional view of an 

element oriented to the 1x , 1y , 1z  axes 

The xyz axes are parallel to the edges of the element, and the faces of the element 

are designated by the directions of their outward normals. For instance, the right-hand 

face of the element is referred to as the positive y face, and the left-hand face (hidden 

from the viewer) is referred to as the negative y face. Similarly, the top face is the 

positive z face, and the front face is the positive x face. 

When the material is in plane stress in the yz plane, only the y and z faces of the 

element are subjected to stresses, and all stresses act parallel to the y and z axes, as 

shown in Fig. 8a. This stress condition is very common because it exists at the surface 

of any stressed body, except at points where external loads act on the surface. When the 

element shown in Fig. 8a is located at the free surface of a body, the x face is in the 

plane of the surface (no stresses) and the x axis is normal to the surface. This face may 

be considered as zero principal plane (see Fig. 5). 
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The symbols for the stresses shown in Fig. 8a have the following meanings. A 

normal stress   has a subscript that identifies the face on which the stress acts; for 

instance, the stress y  acts on the y face of the element and the stress z  acts on the z 

face of the element. Since the element is infinitesimal in size, equal normal stresses 

act on the opposite faces. The sign convention for normal stresses is the familiar one, 

namely, tension is positive and compression is negative. 

A shear stress   has two subscripts – the first subscript denotes the normal to the 

face on which the stress acts, and the second gives the direction on that face. Thus, the 

stress yz  acts on the y face in the direction of the z axis (Fig. 8a), and stress zy  acts 

on the z face in the direction of the y axis. 

The sign convention for shear stresses is as follows. A shear stress is positive 

when it acts on a positive face of an element in the positive direction of an axis, and it 

is negative when it acts on a positive face of an element in the negative direction of 

an axis. Therefore, the stresses yz  and zy  shown on the positive y and z faces in 

Fig. 8a are positive shear stresses. Similarly, on a negative face of the element, a shear 

stress is positive when it acts in the negative direction of an axis. Hence, the stresses 

yz  and zy  shown on the negative y and z faces of the element are also positive. 

The preceding sign convention for shear stresses is dependable on the 

equilibrium of the element, because we know that shear stresses on opposite faces of an 

infinitesimal element must be equal in magnitude and opposite in direction. Hence, 

according to our sign convention, a positive stress yz  acts upward on the positive face 

(Fig. 8a) and downward on the negative face. In a similar manner, the stresses zy  

acting on the top and bottom faces of the element are positive although they have 

opposite directions. 

We know that shear stresses on mutually perpendicular planes are equal in 

magnitude and have directions such that both stresses point toward, or both point away 

from, the line of intersection of the faces. Inasmuch as yz  and zy  are positive in the 
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directions shown in the Fig. 8, they are consistent with this observation. Therefore, we 

note that 

yz zy  .      (1) 

This equation was called earlier the law of equality for shear stresses. It was derived 

from equilibrium of the element. 

For convenience in sketching plane-stress elements, we usually draw only a two-

dimensional view of the element, as shown in Fig. 8b. 

2   Stresses on Inclined Planes 

Our goal now is to consider the stresses acting on inclined sections, assuming 

that the stresses y , z , and yz  (Figs. 8a and b) are known. To determine the stresses 

acting on an inclined section at positive (counterclockwised)  -angle, we consider a 

new stress element (Fig. 8c) that is located at the same point in the material as the 

original element (Fig. 8b). However, the new element has faces that are parallel and 

perpendicular to the inclined direction. Associated with this new element are axes 1y , 

1z  and 1x  such that the 1x  axis coincides with the x axis and the 1 1,y z  axes are rotated 

counterclockwise through an angle   with respect to the yz axes. The normal and 

shear stresses acting on this new element are denoted 
1y

 , 
1z

 , 
1 1y z , and 

1 1z y , using 

the same subscript designations and sign conventions described above for the stresses 

acting on the yz element. The previous conclusions regarding the shear stresses still 

apply, so that 

1 1 1 1y z z y  .     (2) 

Note, that more simple designation of the stresses on inclined faces is used: 
1y   , 

1z   , yz   , zy   . 

From Eq. 2 and the equilibrium of the element, we see that the shear stresses acting on 

all four side faces of an element in plane stress are known if we determine the shear 

stress acting on any one of those faces. 
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The stresses acting on the inclined 1 1,y z  element (Fig. 8c) can be expressed in 

terms of the stresses on the yz element (Fig. 8b) by using equations of equilibrium. 

For this purpose, we choose a wedge-shaped stress element (Fig. 9a) having an 

inclined face that is the same as the 1y  face of the inclined element. The other two side 

faces of the wedge are parallel to the y and z axes. 

 

Fig. 9   Wedge-shaped stress element in plane stress state: (a) stresses acting on the 

element, and (b) internal forces acting on the element 

In order to write equations of equilibrium for the wedge, we need to construct a 

free-body diagram showing the forces acting on the faces. Let us denote the area of the 

left-hand side face (that is, the negative y face) as 0A . Then the normal and shear forces 

acting on that face are 0y A  and 0yz A , as shown in the free-body diagram of Fig. 9b. 

The area of the bottom face (or negative z face) is 0 tanA  , and the area of the inclined 

face (or positive 1y  face) is 0 secA  . Thus, the normal and shear forces acting on these 

faces have the magnitudes and directions shown in the Fig. 9b. 

The forces acting on the left-hand and bottom faces can be resolved into 

orthogonal components acting in the 1y  and 1z  directions. Then we can obtain two 
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equations of equilibrium by summing forces in those directions. The first equation, 

obtained by summing forces in the 1y  direction, is 

1 0 0 0

0 0

sec cos sin

tan sin tan cos 0.
y y yz

z zy

A A A

A A

     

     

  

  
   (3) 

Summation of forces in the 1y  direction gives 

1 1 0 0 0

0 0

sec sin cos

tan cos tan sin 0.
y z y yz

z zy

A A A

A A

     

     

  

  
   (4) 

Using the relationship yz zy  , we obtain after simplification the following two 

equations: 

1

2 2cos sin 2 sin cosy y z yz          ,       (5) 

   1 1

2 2sin cos cos siny z y z yz            .  (6) 

Equations (5) and (6) give the normal and shear stresses acting on the 1y  plane in 

terms of the angle   and the stresses y , z , and yz  acting on the y and z planes. 

Due to 
1y

  and 
1 1y z  are applied to the inclined face at the   angle relative to y 

direction, it is convenient to designate, that  

1y       and    
1 1y z   .    (7) 

It is interesting to note, that in 0   Eqs. (5) and (6) give 
1y y   and 

1 1y z yz  . Also, when 90   , these equations give 
1y z   and 

1 1y z yz zy      . In the latter case, since the 1y  axis is vertical when 90   , the 

stress 
1 1y z  will be positive when it acts to the left. However, the stress zy  acts to the 

right, and therefore 
1 1y z zy   . 

Equations (5) and (6) can be expressed in a more convenient form by introducing 

the following trigonometric identities: 
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 2 1
cos 1 cos2

2
   ,     2 1

sin 1 cos2
2

   ,    
1

sin cos sin 2
2

   . (8) 

After these substitutions the equations become 

1
cos2 sin 2

2 2

y z y z
y yz

   
   

 
   ,       (9) 

1 1
sin 2 cos2

2

y z
y z yz

 
   


   .         (10) 

These equations are known as the transformation equations for plane stress 

because they transform the stress components from one set of axes to another. 

Note. (1) Only one intrinsic state of stress exists at the point in a stressed 

body, regardless of the orientation of the element, i.e. whether represented by 

stresses acting on the yz  element (Fig. 8b) or by stresses acting on the inclined 

1 1y z  element (Fig. 8c). (2) Since the transformation equations were derived only 

from equilibrium of an element, they are applicable to stresses in any kind of 

material, whether linear or nonlinear, elastic or inelastic. 

An important result concerning the normal stresses can be obtained from the 

transformation equations. The normal stress 
1z

  acting on the 1z  face of the inclined 

element (Fig. 8c) can be obtained from Eq. (9) by substituting 90    for  . The 

result is the following equation for 
1z

 : 

1
cos2 sin 2

2 2

y z y z
z yz

   
   

 
   .  (11) 

Summing the expressions for 
1y

  and 
1z

  (Eqs. (9) and (11)), we obtain the 

following equation for plane stress: 

1 1
consty z y z       .    (12) 

Note.   The sum of the normal stresses acting on perpendicular faces of 

plane-stress elements (at a given point in a stressed body) is constant and 

independent on the angle  . 
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The graphs of the normal and shear stresses varying are shown in Fig. 10, which 

are the graphs of 
1y

  and 
1 1y z  versus the angle   (from Eqs. 9 and 10). The graphs 

are plotted for the particular case of 0.2z y   and 0.8yz y  . It is seen from the 

plots that the stresses vary continuously as the orientation of the element is changed. At 

certain angles, the normal stress reaches a maximum or minimum value; at other 

angles, it becomes zero. Similarly, the shear stress has maximum, minimum, and zero 

values at certain angles. 

 
Fig. 10   Graphs of normal stress 

1y
  and shear stress 

1 1y z  versus the angle   (for 

particular case: 0.2z y   and 0.8yz y  ) 

3   Special Cases of Plane Stress 

3.1   Uniaxial Stress State as a Simplified Case of Plane Stress 

The general case of plane stress reduces to 

simpler states of stress under special conditions. For 

instance, as previously discussed, if all stresses 

acting on the yz element (Fig. 8b) are zero except for 

the normal stress y , then the element is in uniaxial 

stress (Fig. 11). The corresponding transformation 

 

Fig. 11   Element in uniaxial stress 
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equations, obtained by setting z  and yz  equal to zero in Eqs. (9) and (10), are 

 
1

21 cos2 cos
2

y
y y


      ,    (13) 

 
1 1

sin 2
2

y
y z


   .     (14) 

Note, that this type of stress state corresponds to axial tension deformation (see Fig. 1) 

3.2   Pure Shear as a Special Case of Plane Stress 

Pure shear is another special case of plane stress 

state (Fig. 12), for which the transformation equations are 

obtained by substituting 0y   and 0z   into Eqs. (9) 

and (10): 

1
sin2y yz   ,   (15) 

1 1
cos2y z yz   .   (16) 

3.3   Biaxial Stress 

The next special case of plane stress state is called biaxial stress, in which the yz 

element is subjected to normal stresses in both the y and z directions but without any 

shear stresses (Fig. 13). The equations for biaxial stress are obtained from Eqs. (9) and 

(10) by dropping the terms containing yz : 

1
cos2

2 2

y z y z
y

   
 

 
  ,   (17) 

1 1
sin 2

2

y z
y z

 
 


  .       (18) 

or in  ,   designation,  

1

2 2cos siny y z      ,         (19) 

 

Fig. 12   Element in pure shear 
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 
1 1

sin 2
2

y z
y z

 
 


  .    (20) 

Biaxial stress occurs in many kinds of structures, including thin-walled pressure 

vessels (see Fig. 14). 

  

Fig. 13   Elements in biaxial stress 

Fig. 14   Element in biaxial 
stress state in pressure 

vessel (stresses, normal to 
the surface are assumed to 

be zero) 

Example 1 

The state of stress at a point in the machine element is shown in Fig. a. 

Determine the normal and shearing stresses acting on an inclined plane parallel to (1) 

line a a  and (2) line b b . 

 

                 (a)                                       (b)                                          (c) 

Solution   The 1x  direction is that of a normal to the inclined plane. We want to 

obtain the transformation of stress from the xy  system of coordinates to the 1 1x y  

system. 
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Note, that the stresses and the rotations must be designated with their 

correct signs. 

(1)   Applying Eqs. (9 through 11) for 45   , 10x   MPa, 5y    MPa, and 

6xy    MPa, we obtain 

   
1

1 1
10 5 10 5 cos90 6sin90 3.5

2 2
x          MPa,

 
1 1

1
10 5 sin90 6cos90 7.5

2
x y         MPa, 

and 

   
1

1 1
10 5 10 5 cos90 6sin90 8.5

2 2
y         MPa. 

The results are indicated in Fig. b. 

(2)   As 30 90 120     , from Eqs. (9 through 11), we have 

   
1

1 1
10 5 10 5 cos240 6sin 240 3.95

2 2
x         MPa, 

 
1 1

1
10 5 sin 240 6cos240 9.5

2
x y        MPa, 

and 

   
1

1 1
10 5 10 5 cos240 6sin 240 1.05

2 2
y         MPa. 

The results are indicated in Fig. c. 

Example 2 

A two-dimensional stress state at a point in a loaded structure is shown in Fig. a. 

(1) Write the stress-transformation equations. (2) Compute 
1x

  and 
1 1x y  with   

between 0 and 180  in 15  increments for 7x  MPa, 2y  MPa, and 5xy   MPa. 

Plot the graphs  
1x

  and  
1 1x y  . 
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Variation in normal stress 
1x

  and shearing stress 
1 1x y  with angle   varying between 0 and 180° 

Solution   (1)   We express Eqs. (9) and (10) as follows: 

1

1 1

cos2 sin 2 ,

sin 2 cos2 ,
x

x y

A B C

B C

  

  

  

  
 

where 

   
1 1

, ,
2 2

x y x y xyA B C         . 

(2)   Substitution of the prescribed values into Eqs. (9) and (10) results in 

1
4.5 2.5cos2 5sin2x     , 

1 1
2.5sin2 5cos2x y     . 

Here, permitting   to vary from 0 to 180° in increments of 15° yields the data 

upon which the curves shown in Fig. b are based. These cartesian representations 

indicate how the stresses vary around a point. Observe that the direction of maximum 

(and minimum) shear stress bisects the angle between the maximum and minimum 

normal stresses. Moreover, the normal stress is either a maximum or a minimum on 

planes 31.7    and 31.7 90   , respectively, for which the shearing stress is 
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zero. Note. The conclusions drawn from the foregoing are valid for any state of 

stress. 

Example 3 

An element in plane stress is subjected to stresses 110.32x   MPa, 

41.37y  MPa, and 27.58xy yx   MPa, as shown in Fig. a. Determine the stresses 

acting on an element inclined at an angle 45   . 

 

(a) Element in plane stress, and (b) element inclined at an angle 45    

Solution   To determine the stresses acting on an inclined element, we will use 

the transformation equations (Eqs. (9) and (10)). From the given numerical data, we 

obtain the following values for substitution into those equations: 

75.845
2

x y 
 MPa,   34.475

2

x y 
 MPa,   27.58xy  MPa, 

sin2 sin90 1    ,     cos2 cos90 0    . 

Substituting these values into Eqs. (9) and (10), we get 

1
cos2 sin 2

2 2

x y x y
x xy

   
   

 
     

     75.845 MPa 34.475 MPa 0 27.58 MPa 1 103.425 MPa,     

1 1
sin 2 cos2

2

x y
x y xy

 
   


     
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     34.475 MPa 1 27.58 MPa 0 34.475 MPa.      

In addition, the stress 
1y

  may be obtained from Eq. (11): 

1
cos2 sin 2

2 2

x y x y
y xy

   
   

 
     

     75.845 MPa 34.475 MPa 0 27.58 MPa 1 48.265 MPa.     

From these results we can obtain the stresses acting on all sides of an element 

oriented at 45   , as shown in Fig. b. The arrows show the true directions in which 

the stresses act. Note especially the directions of the shear stresses, all of which have 

the same magnitude. Also, observe that the sum of the normal stresses remains constant 

and equal to 151.69 MPa from Eq. (12): 

1 1
151.69 MPa.x y x y        

Note. The stresses shown in Fig. b represent the same intrinsic state of stress 

as do the stresses shown in Fig. a. However, the stresses have different values 

because the elements on which they act have different orientations. 

Example 4 

On the surface of a loaded structure a plane stress state exists at a point, where 

the stresses have the magnitudes and directions shown on the stress element of Fig. a. 

Determine the stresses acting on an element that is oriented at a clockwise angle of 15° 

with respect to the original element. 
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Solution   The stresses acting on the original element (see Fig. a) have the 

following values: 

46x   MPa,    12y  MPa,    19xy   MPa. 

An element oriented at a clockwise angle of 15° is shown in Fig. b, where the 1x  axis is 

at an angle 15     with respect to the x axis (clockwised rotation).  

We will calculate the stresses on the 1x  face of the element oriented at 15     

by using the transformation equations (Eqs. (9) and (10)). The components are: 

17
2

x y
A

 
   MPa,    29

2

x y
B

 
   MPa, 

 sin2 sin 30 0.5      ,     cos2 cos 30 0.8660     . 

Substituting into the transformation equations, we get 

1
cos2 sin 2

2 2

x y x y
x xy

   
   

 
     

     17 MPa 29 MPa 0.8661 19 MPa 0.5 32.6 MPa,          

1 1
sin 2 cos2

2

x y
x y xy

 
   


     

     29 MPa 0.5 19 MPa 0.8660 31.0 MPa.         

Also, the normal stress acting on the 1y  face (Eq. (3.10)) is 

1
cos2 sin 2

2 2

x y x y
y xy

   
   

 
     

     17 MPa 29 MPa 0.8661 19 MPa 0.5 1.4 MPa.          

To check the results, we note that 
1 1x y x y      . 

The stresses acting on the inclined element are shown in Fig. b, where the arrows 

indicate the true directions of the stresses. 

Note. Both stress elements shown in the figure represent the same state of 

stress. 
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4   Principal Stresses and Maximum Shear Stresses 

The transformation equations for plane stress show that the normal stresses 
1y

  

and the shear stresses 
1 1y z  vary continuously as the axes are rotated through the angle 

 . This variation is pictured in Fig. 10 for a particular combination of stresses. From 

the figure, we see that both the normal and shear stresses reach maximum and 

minimum values at 90° intervals. These maximum and minimum values are usually 

needed for design purposes. For instance, fatigue failures of structures such as 

machines and aircraft are often associated with the maximum stresses, and hence their 

magnitudes and orientations should be determined as part of the design process. 

The determination of principal stresses is an example of a type of mathematical 

analysis known as eigenvalue problem in matrix algebra. The stress-transformation 

equations and the concept of principal stresses are due to the French mathematicians 

A. L. Cauchy (1789–1857) and Barre de Saint-Venant (1797–1886) and to the Scottish 

scientist and engineer W. J. M. Rankine (1820–1872). 

4.1   Principal Stresses 

The maximum and minimum normal stresses, called the principal stresses, can 

be found from the transformation equation for the normal stress 
1y

  (Eq. 9). By taking 

the derivative of 
1y

  with respect to   and setting it equal to zero, we obtain an 

equation from which we can find the values of at which 
1y

  is a maximum or 

minimum. The equation for the derivative is 

 1 sin 2 2 cos2 0
y

y z yz

d

d


    


     ,   (21) 

from which we get 

2
tan 2

yz
p

y z




 



,     (22) 

or in more simple designation,  
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2
tan 2 p



 




 



,    (23) 

The subscript p  indicates that the angle p  defines the orientation of the principal 

planes, i.e. the planes, on which the principal stresses act. 

Two values of the angle 2 p  in the range from 0 to 360° can be obtained from 

Eq. (22). These values differ by 180°, with one value between 0 and 180° and the other 

between 180° and 360°. Therefore, the angle p  has two values that differ by 90°, one 

value between 0 and 90° and the other between 90° and 180°. The two values of p  are 

known as the principal angles. For one of these angles, the normal stress 
1y

  is a 

maximum principal stress; for the other, it is a minimum principal stress. Because 

the principal angles differ by 90°, we see that the principal stresses occur on mutually 

perpendicular planes. 

The principal stresses can be calculated by substituting each of the two values of 

p  into the first stress-transformation equation (Eq. 9) and solving for 
1y

 . By 

determining the principal stresses in this manner, we not only obtain the values of the 

principal stresses but we also learn which principal stress is associated with which 

principal angle. 

Let us obtain the formulas for the principal stresses, using right triangle in 

Fig. 15, constructed from Eq. (22). The hypotenuse of the triangle, obtained from the 

Pythagorean theorem, is 

2
2

2

y z
yzR

 


 
  

 
.  (24) 

The quantity R is always a positive number 

and, like the other two sides of the triangle, 

has units of stress. From the triangle we 

obtain two additional relations: 

 

Fig. 15   Geometric analogue of Eq. (22) 
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cos2
2

y z
p

R

 



 ,       (25) 

sin 2
yz

p
R


  .     (26) 

Now we substitute these expressions for cos2 p  and sin 2 p  into Eq. (9) and obtain 

the algebraically larger of the two principal stresses, denoted by 1 : 

2
2

1
2 2

y z y z
yz

   
 

  
   

 
.    (27) 

The smaller of the principal stresses, denoted by 3 , may be found from the condition 

that the sum of the normal stresses on perpendicular planes is constant (see Eq. 12): 

1 3 y z      .     (28) 

Substituting the expression for 1  into Eq. (28) and solving for 3 , we get 

2
2

3
2 2

y z y z
yz

   
 

  
   

 
.    (29) 

The formulas for 1  and 3  can be combined into a single formula for the 

principal stresses: 

2
2

max,min 1,3
2 2

y z y z
yz

   
  

  
    

 
.   (30) 

Note. The plus sign gives the algebraically larger principal stress and the 

minus sign gives the algebraically smaller principal stress. 

Let us now find two angles defining the principal planes as 
1p  and 

2p , 

corresponding to the principal stresses 1  and 3 , respectively. Both angles can be 

determines from the equation for tan 2 p  (Eq. 22). To correlate the principal angles 
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and principal stresses we will use Eqs. (25) and (26) to find p  since the only angle 

that satisfies both of those equations is 
1p . Thus, we can rewrite those equations as 

follows: 

1
cos2

2

y z
p

R

 



 ,     (31) 

1
sin 2

yz
p

R


  .           (32) 

Only one angle exists between 0 and 360° that satisfies both of these equations. Thus, 

the value of 
1p  can be determined uniquely from Eqs. (31) and (32). The angle 

2p , 

corresponding to 3 , defines a plane that is perpendicular to the plane defined by 
1p . 

Therefore, 
2p  can be taken as 90° larger or 90° smaller than 

1p . 

It is very important to evaluate the value of shear stresses acting at principal 

planes since it was noted earlier that they are zero. For this purpose, we will use the 

transformation equation for the shear stresses (Eq. (10)). If we set the shear stress 
1 1y z  

equal to zero, we get an equation that is the same as Eq. (21). It means that the angles 

to the planes of zero shear stress are the same as the angles to the principal planes. 

Thus, the shear stresses are zero on the principal planes. 

The principal planes for elements in uniaxial stress and biaxial stress are the y 

and z planes themselves (Fig. 16), because tan2 0p   (see Eq. 22) and the two values 

of p  are 0 and 90°. We also know that the y and z planes are the principal planes from 

the fact that the shear stresses are zero on those planes. 
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Fig. 16   Elements in uniaxial (a) and (b) and biaxial (c), (d), (e) stress state:  

(a) 80 MPa 1y   , 0 2(3)z   , 0 3(2)x   ; 

(b) 80 MPa 3y    , 0 1(2)z   , 0 2(1)x   ; 

(c) 60 MPa 1y   , 25 MPa 2z   , 0 3x   ; 

(d) 60 MPa 3y    , 25 MPa 1z   , 0 2x   ; 

(e) 60 MPa 3y    , 25 MPa 2z    , 0 1x    

For an element in pure shear (Fig. 17a), the principal planes are oriented at 45° 

to the y axis (Fig. 17b), because tan 2 p  is infinite and the two values of p  are 45° 

and 135°. If yz  is positive, the principal stresses are 1 yz   and 3 yz   . 

 
Fig. 17   Element in pure shear 
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Two principal stresses determined from Eq. (30) are called the in-plane 

principal stresses, since they refer only to rotation of axes in the zy plane, that is 

rotation about the x axis. Really any stress element is three-dimensional (Fig. 18a) and 

has three (not two) principal stresses acting on three mutually perpendicular planes. By 

making a more complete three-dimensional analysis, it can be shown that the three 

principal planes for a plane-stress element are the two principal planes already 

described plus the x face of the element. These principal planes are shown in Fig. 18b, 

where a stress element has been oriented at the principal angle 
1p  which corresponds 

to the principal stress 1 . The principal stresses 1  and 2  are given by Eq. (30), and 

the third principal stress ( 3 ) equals zero. By definition, 1  is algebraically the 

largest and 3  is algebraically the smallest one. 

Note. There are no shear stresses on any of the principal planes. 

 

Fig. 18   Elements in plane stress: (a) original element, and (b) element oriented to the three 

principal planes and three principal stresses 

4.2   Maximum Shear Stresses 

Now we consider the determination of the maximum shear stresses and the 

planes on which they act. The shear stresses 
1 1y z  acting on inclined planes are given 
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by the second transformation equation (Eq. 10). Equating the derivative of 
1 1y z  with 

respect to   to zero, we obtain 

 1 1 cos2 2 sin 2 0
y z

y z yz

d

d


    


     ,   (33) 

from which 

tan 2
2

y z
s

yz

 





  .     (34) 

The subscript s indicates that the angle s  defines the orientation of the planes of 

maximum positive and negative shear stresses. Equation (34) yields one value of s  

between 0 and 90° and another between 90° and 180°. These two values differ by 90°, 

and therefore the maximum shear stresses occur on perpendicular planes. Because shear 

stresses on perpendicular planes are equal in absolute value, the maximum positive and 

negative shear stresses differ only in sign. 

Comparing Eq. (34) for s  with Eq. (22) for p  shows that 

1
tan 2 cot 2

tan 2
s p

p
 


    .   (35) 

This equation is the relationship between the angles s , and p . Let us rewrite this 

equation in the form 

cos2sin 2
0

cos2 sin 2

ps

s p



 
  ,     (36) 

or 

sin2 sin2 cos2 cos2 0s p s p     .   (37) 

Eq. (37) is equivalent to the following expression: 

 cos 2 2 0s p   . 

Therefore, 
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2 2 90s p     , 

and 

45s p    .         (38) 

Note. Eq. (38) shows that the planes of maximum shear stress occur at 45° to 

the principal planes. 

The plane of the maximum positive shear stress max  is defined by the angle 

1s
 , for which the following equations apply: 

1
cos2

yz
s

R


  ,     (39) 

1
sin 2

2

y z
s

R

 



  ,       (40) 

in which R is given by Eq. (24). Also, the angle 
1s

  is related to the angle 
1p  (see 

Eqs. (31) and (32)) as follows: 

1 1
45s p    .     (41) 

Corresponding maximum shear stress is obtained by substituting the expressions for 

1
cos2 s  and 

1
sin 2 s  into the second transformation equation (Eq. 8), yielding 

2
2

max
2

y z
yz

 
 

 
  

 
.    (42) 

The maximum negative shear stress has the same magnitude but opposite sign. 

Another expression for the maximum shear stress max  can be obtained from the 

principal stresses 1  and 3 , both of which are given by Eq. (30). Subtracting the 

expression for 3  from that for 1  and then comparing with Eq. (42), we see that 

1 3
max

2

 



 .     (43) 
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Note. Maximum shear stress is equal to one-half the difference of the 

principal stresses. 

The planes of maximum shear stress max  also contain normal stresses. The 

normal stress acting on the planes of maximum positive shear stress can be determined 

by substituting the expressions for the angle 
1s

  (Eqs. (39) and (40)) into the equation 

for 
1y

  (Eq. 9). The resulting stress is equal to the average of the normal stresses on 

the y and z planes: 

2

y z
aver

 



 .     (44) 

This same normal stress acts on the planes of maximum negative shear stress. 

In the particular cases of uniaxial stress and biaxial stress (Fig. 16), the planes of 

maximum shear stress occur at 45° to the y and z axes. In the case of pure shear 

(Fig. 17), the maximum shear stresses occur on the y and z planes. 

The analysis of shear stresses has dealt only with the stresses acting in the yz 

plane, i.e. in-plane shear stress. The maximum in-plane shear stresses were found on an 

element obtained by rotating the x, y, z axes (Fig. 18a) about the 1x  axis through an 

angle of 45° to the principal planes. The principal planes for the element of Fig. 18a are 

shown in Fig. 18b. 

We can also obtain maximum shear stresses by 45° rotations about the other two 

principal axes (the 1y  and 1z  axes in Fig. 18b). As a result, we obtain three sets of 

maximum positive and maximum negative shear stresses (compare with Eq. (43)). 

Example 5 

An element in plane stress is subjected to stresses 84.8x  MPa, 

28.9y   MPa, and 32.4xy   MPa, as shown in Fig. a. (1) Determine the principal 

stresses and show them on a sketch of a properly oriented element; (2) Determine the 

maximum shear stresses and show them on a sketch of a properly oriented element. 
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(a) Element in plane stress 

 

(b) principal stresses; and (c) maximum shear stresses 

Solution   (1) Calculation of principal stresses. The principal angles p  that 

locate the principal planes can be obtained from Eq. (22): 

 
 

2 2 32.4 MPa
tan 2 0.5697.

84.8 MPa 28.9 MPa

xy
p

x y




 


   

  
 

Solving for the angles, we get the following two sets of values: 

2 150.3p       and    75.2p   , 

2 330.3p       and    165.2p   . 
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The principal stresses may be obtained by substituting the two values of 2 p  

into the transformation equation for 
1x

  (Eq. (9)). Determine preliminary the following 

quantities: 

84.8 MPa 28.9 MPa
27.9 MPa

2 2

x y
A

  
   , 

84.8 MPa 28.9 MPa
56.8 MPa

2 2

x y
B

  
   . 

Now we substitute the first value of 2 p  into Eq. (9) and obtain 

1
cos2 sin 2

2 2

x y x y
x xy

   
   

 
     

     27.9 MPa 56.8 MPa cos150.3 32.4 MPa sin150.3 37.5 MPa       . 

By the similar way, we substitute the second value of 2 p  and obtain 
1

93.4x  MPa. 

In result, the principal stresses and their corresponding principal angles are 

1 93.4 MPa   and 
1

165.2p    

3 37.5 MPa    and 
2

75.2p   . 

Keep in mind, that 2 0   acts in z direction. 

Note, that 
1p  and 

2p  differ by 90° and that 1 3 x y      . 

The principal stresses are shown on a properly oriented element in the Fig. b. Of 

course, the principal planes are free from shear stresses. 

The principal stresses may also be calculated directly from Eq. (30): 

2
2

1,2(3)
2 2

x y x y
xy

   
 

  
    

 
 

   
2 2

27.9 MPa 56.8 MPa 32.4 MPa    , 

1,2(3) 27.9 MPa 65.4 MPa   . 
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Therefore,  

1 93.4 MPa  , 3 37.5 MPa   ,  2 0  . 

(2) Maximum shear stresses. The maximum in-plane shear stresses are given by 

Eq. (42): 

   
2

2 22
max 56.8 MPa 32.4 MPa 65.4 MPa

2

x y
xy

 
 

 
      

 
. 

The angle 
1s

  to the plane having the maximum positive shear stress is calculated from 

Eq. (41): 

1 1
45 165.2 45 120.2s p         . 

It follows that the maximum negative shear stress acts on the plane for which 

2
120.2 90 30.2s      . 

The normal stresses acting on the planes of maximum shear stresses are 

calculated from Eq. (44): 

aver 27.9
2

x y 



  MPa. 

Finally, the maximum shear stresses and associated normal stresses are shown on the 

stress element of Fig. c. 

5   Circular Diagrams for Plane Stress (Mohr’s circles) 

The basic equations of stress transformation derived earlier may be interpreted 

graphically. The graphical technique permits the rapid transformation of stress from 

one plane to another and also provides an overview of the state of stress at a point. It 

provides a means for calculating principal stresses, maximum shear stresses, and 

stresses on inclined planes. This method was devised by the German civil engineer Otto 

Christian Mohr (1835–1918), who developed a plot known as Mohr’s circle in 1882. 

Mohr’s circle is valid not only for stresses, but also for other quantities of a similar 

nature, including strains and moments of inertia. 
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5.1   Equation of Mohr’s circle 

The equations of Mohr’s circle can be derived from the transformation equations 

for plane stress (Eqs. ((9), (10)). These two equations may be represented as 

1
cos2 sin 2

2 2

y z y z
y xy

   
   

 
   ,        (45) 

1 1
sin 2 cos2

2

y z
y z yz

 
   


   .    (46) 

Squaring each equation, adding them, and simplifying, we obtain well-known equation 

of a circle: 

1 1 1

2 2
2 2

2 2

y z y z
y y z yz

   
  

    
      

   
.    (47) 

This equation can be written in more simple form using the following notation: 

aver
2

y z 



 .       (48) 

2
2

2

y z
yzR

 


 
  

 
.     (49) 

Equation (47) now becomes 

 1 1 1

2 2 2
avery y z R     ,    (50) 

which is the equation of a circle in standard algebraic form. The coordinates are 
1y

  

and 
1 1y z , the radius is R and the center of the circle has coordinates 

1 avery   and 

1 1
0y z  . 

5.2   Mohr’s circle construction 

Mohr’s circle can be plotted from Eqs. (45, 46) and (50) in two different ways. 

We will plot the normal stress 
1y

  positive to the right and the shear stress 
1 1y z  

positive downward, as shown in Fig. 19. The advantage of plotting shear stresses 
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positive downward is that the angle 2  on Mohr’s circle is positive when 

counterclockwise, which agrees with the positive direction of 2  in the derivation of 

the transformation equations. 

Mohr’s circle can be constructed in a variety of ways, depending upon which 

stresses are known and which are unknown. Let us assume that we know the stresses 

y , z  and yz  acting on the y and z planes of an element in plane stress (Fig. 20a). 

This information is sufficient to construct the circle. Then, with the circle drawn, we 

can determine the stresses y , z  and 
1 1y z  acting on an inclined element (Fig. 20b). 

We can also obtain the principal stresses and maximum shear stresses from the circle. 

With y , z  and yz  known, the 

procedure for constructing Mohr’s circle is 

as follows (see Fig. 20c): 

(a) Draw a set of coordinate axes with 

1y  as abscissa (positive to the right) and 

1 1y z  as ordinate (positive downward). 

(b) Locate the center C of the circle at 

the point having coordinates 
1 avery   

and 
1 1

0y z   (see Eqs. (48) and (50)). 

(c) Locate point A, representing the 

stress conditions on the y face of the element 

shown in Fig. 20a, by plotting its coordinates 

1y y   and 
1 1y z yz  . Note that point A 

corresponds to 0  . The y face of the element (Fig. 20a) is labeled “A” to show its 

correspondence with point A in the diagram. 

(d) Locate point B representing the stress conditions on the z face of the element 

shown in Fig. 20a, by plotting its coordinates 
1y z   and 

1 1y z yz   . Point B 

corresponds to 90   . The z face of the element (Fig. 20a) is labeled “B” to show its 

correspondence with point B in the diagram. 

(e) Draw a line from point A to point B. It is a diameter of the circle and passes 

through the center C. Points A and B, representing the stresses on planes at 90  to each 

other, are at opposite ends of the diameter (and therefore are 180  apart on the circle). 

 

Fig 19   The form of Mohr’s circle with 
1 1y z  

positive downward and the angle 2  positive 

counterclockwise 
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(f) Using point C as the center, draw Mohr’s circle though points A and B. The 

circle drawn in this manner has radius R (Eq. (49)). 

Note. When Mohr's circle is plotted to scale, numerical results can be 

obtained graphically. 

 

Fig. 20   Construction of Mohr’s circle for plane stress 
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(1) Stresses on an inclined element. Mohr’s circle shows how the stresses 

represented by points on it are related to the stresses acting on an element. The stresses 

on an inclined plane defined by the angle   (Fig. 20b) are found on the circle at the 

point where the angle from the reference point (point A) is 2 . Thus, as we rotate the 

1 1y z  axes counterclockwise through an angle   (Fig. 20b), the point on Mohr’s circle 

corresponding to the 1y  face moves counterclockwise through an angle 2 . Similarly, 

in clockwise rotation of the axes, the point on the circle moves clockwise through an 

angle twice as large. 

(2) Principal stresses. The determination of principal stresses is the most 

important application of Mohr’s circle. As we move around Mohr’s circle (Fig. 20c), 

we encounter point 1P  where the normal stress reaches its algebraically largest value 

and the shear stress is zero. Hence, point 1P  gives the algebraically larger principal 

stress and its angle 
1

2 p  from the reference point A ( 0  ) gives the orientation of the 

principal plane. The next principal plane, associated with the algebraically smallest 

normal stress, is represented by point 3P , diametrically opposite to point 1P . 

(3) Maximum shear stresses. Points 1S  and 2S  which represent the planes of 

maximum positive and maximum negative shear stresses, respectively, are located at 

the bottom and top of Mohr’s circle (Fig. 20c). These points are at angles 2 90    

from points 1P  and 3P , which agrees with the fact that the planes of maximum shear 

stress are oriented at 45  to the principal planes. The maximum shear stresses are 

numerically equal to the radius R of the circle. Also, the normal stresses on the planes 

of maximum shear stress are equal to the abscissa of point C, which is the average 

normal stress aver . 

Various multiaxial states of stress can readily be treated by applying the 

foregoing procedure. Fig. 21 shows some examples of Mohr's circles for commonly 

encountered cases. Analysis of material behavior subject to different loading conditions 

is often facilitated by this type of compilation. Interestingly, for the case of equal 

tension and compression (this type of stress state was named as pure shear) (see 

Fig. 21a), 0x   and the x-directed strain does not exist ( 0x  ). Hence the element is 

in a state of plane strain as well as plane stress. An element in this condition can be 

converted to a condition of pure shear by rotating it 45° as indicated. 
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In the case of triaxial tension (Fig. 21b and 22a), a Mohr's circle is drawn 

corresponding to each projection of a three-dimensional element (see Fig. 22b). The 

three-circle cluster represents Mohr's circle for triaxial stress. The case of tension with 

lateral pressure (Fig. 21c) is explained similarly. 

 

Fig. 21   Mohr's circle for various states of stress 

(a)
(b) (c)

1

1

1

1
1

2

2

2 2

2

3
3 3

3

3

 

Fig. 22   Three-dimensional state of stress 
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Note. Mohr's circle eliminates the need to remember the formulas of stress 

transformation. 

Example 6 

At a point on the surface of a cylinder, loaded by internal pressure, the material is 

subjected to biaxial stresses 90y  MPa and 20z  MPa, as shown on the stress 

element of figure (a). Using Mohr's circle, determine the stresses acting on an element 

inclined at an angle 30   . (Consider only the in-plane stresses, and show the results 

on a sketch of a properly oriented element). 

 

                              (a)                                                       (b) 

 
                                                                (c) 
(a) Element in plane stress; (b) stresses acting on a n element oriented at an angle 30   ; (c) the 

corresponding Mohr’s circle (Note: All stresses on the circle have units of MPa) 
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Solution   (1) Construction of Mohr’s circle. Let us set up the axes for the 

normal and shear stresses, with 
1y

  positive to the right and 
1 1y z  positive downward, 

as shown in figure (c). Then we place the center C of the circle on the 
1y

  axis at the 

point where the stress equals the average normal stress: 

aver
90 MPa 20 MPa

55 MPa.
2 2

y z 


 
    

Point A, representing the stresses on the y face of the element ( 0  ), has coordinates 

1
90 MPay  , 

1 1
0y z  . 

Similarly, the coordinates of point B, representing the stresses on the z face ( 90  ), 

are 

1
20 MPay  , 

1 1
0y z  . 

Now we draw the circle through points A and B with center at C and radius R equal to 

2 2
2 90 MPa 20 MPa

0 35 MPa.
2 2

y z
yzR

 


   
       

  
 

(2) Stresses on an element inclined at 30   . The stresses acting on a plane 

oriented at an angle 30    are given by the coordinates of point D, which is at an 

angle 2 60    from point A (see figure (c)). By inspection of the circle, we see that the 

coordinates of point D are 

  
1 aver cos60 55 MPa 35 MPa cos60 72.5 MPa,y R         

  
1 1

cos60 35 MPa cos60 30.3 MPa.y z R          

In a similar manner, we can find the stresses represented by point D , which 

corresponds to an angle 120    (or 2 240  ): 

  
1 aver cos60 55 MPa 35 MPa cos60 37.5 MPa,y R         

  
1 1

cos60 35 MPa cos60 30.3 MPa.y z R       
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These results are shown in figure (b) on a sketch of an element oriented at an angle 

30   , with all stresses shown in their true directions. 

Note. The sum of the normal stresses on the inclined element is equal to 

y z   or 110 MPa. 

Example 7 

An element in plane stress at the surface of a structure is subjected to stresses 

100y  MPa, 35z  MPa, and 30yz  MPa, as shown in figure (a). Using Mohr's 

circle, determine the following quantities: (1) the stresses acting on an element inclined 

at an angle 40   , (2) the principal stresses, and (3) the maximum shear stresses. 

Consider only the in-plane stresses, and show all results on sketches of properly 

oriented elements. 

Solution   (1) Construction of Mohr’s circle. Let us set up the axes for Mohr's 

circle, with 
1y

  positive to the right and 
1 1y z  positive downward (see figure (c)). The 

center C of the circle is located on the 
1y

  axis at the point where 
1y

  equals the 

average normal stress: 

aver
100 MPa 35 MPa

67.5 MPa.
2 2

y z 


 
    

Point A, representing the stresses on the y face of the element ( 0  ), has coordinates 

1
100y  MPa,    

1 1
30y z  MPa. 

Similarly, the coordinates of point B, representing the stresses on the z face ( 90  ), 

are 

1
35y  MPa,    

1 1
30x y   MPa. 

The circle is now drawn through points A and B with center at C. The radius of the 

circle is 

 
2 2

22 100 MPa 35 MPa
30 MPa 44.2 MPa.

2 2

y z
yzR

 


   
       

  
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(a) Element in plane stress; (b) stress acting on an element oriented at 40   ; (c) the 

corresponding Mohr’s circle; (d) principal stresses; (e) maximum shear stresses 
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(2) The stresses acting on a plane oriented at an angle 40   . They are given 

by the coordinates of point D, which is at an angle 2 80    from point A (see 

figure (c)). To calculate these coordinates, we need to know the angle between line CD 

and the 
1y

  axis (that is, angle 1DCP ), which in turn requires that we know the angle 

between line CA and the 
1y

  axis (angle 1ACP ). These angles are found from the 

geometry of the circle, as follows: 

1
30 MPa

tan 0.857
35 MPa

ACP   ,    1 40.6ACP   , 

1 180 80 40.6 39.4DCP ACP       . 

Knowing these angles, we can determine the coordinates of point D directly from the 

figure: 

  
1

67.5 MPa 44.2 MPa cos39.4 101.65 MPay     , 

  
1 1

44.2 MPa sin39.4 28.06 MPay z      . 

In an analogous manner, we can find the stresses represented by point D , which 

corresponds to a plane inclined at an angle 130    (or 2 260  ): 

  
1

67.5 MPa 44.2 MPa cos39.4 33.35 MPay      , 

  
1 1

44.2 MPa sin39.4 28.06 MPay z    . 

These stresses are shown in figure (c) on a sketch of an element oriented at an angle 

40    (all stresses are shown in their true directions). 

Note. The sum of the normal stresses is equal to x y   or 135 MPa. 

(3) Principal stresses. The principal stresses are represented by points 1P  and 2P  

on Mohr's circle (see figure (c)). The algebraically larger principal stress (point 1P ) is 

1 67.5 MPa 44.2 MPa 111.7 MPa    , 

as seen by inspection of the circle. The angle 
1

2 p  to point 1P  from point A is the angle 

1ACP  on the circle, that is, 
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11 2 40.6pACP    , 
1

20.3p   . 

Thus, the plane of the algebraically larger principal stress is oriented at an angle 

1
20.3p   , as shown in figure (d). 

The algebraically smaller principal stress (represented by point 2P ) is obtained 

from the circle in a similar manner: 

2 67.5 MPa 44.2 MPa 23.3 MPa    . 

The angle 
2

2 p  to point P2 on the circle is 40.6 180 220.6    ; thus, the second 

principal plane is defined by the angle 
2

110.3p   . The principal stresses and 

principal planes are shown in the figure (d). 

Note. The sum of the normal stresses is equal to 135 MPa. 

(4) Maximum shear stresses. The maximum shear stresses are represented by 

points 1S  and 2S  on Mohr's circle; therefore, the maximum in-plane shear stress (equal 

to the radius of the circle) is 

max 44.2 MPa  . 

The angle 1ACS  from point A to point 1S  is 90 40.6 49.4    , and therefore the 

angle 
1

2 s , for point 1S  is 

1
2 49.4s    . 

This angle is negative because it is measured clockwise on the circle. The 

corresponding angle 
1s

  to the plane of the maximum positive shear stress is one-half 

that value, or 
1

24.7s    , as shown in Figs. (c) and (e). The maximum negative shear 

stress (point 2S  on the circle) has the same numerical value as the maximum positive 

stress (44.2 MPa). 

The normal stresses acting on the planes of maximum shear stress are equal to 

aver , which is the abscissa of the center C of the circle (67.5 MPa). These stresses are 

also shown in figure (e). 

Note. The planes of maximum shear stresses are oriented at 45° to the 

principal planes. 
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Example 8 

At a point on the surface of a shaft the stresses are 50y   MPa, 10z  MPa, 

and 40yz   MPa, as shown in figure (a). Using Mohr's circle, determine the 

following quantities: (1) the stresses acting on an element inclined at an angle 45   , 

(2) the principal stresses, and (3) the maximum shear stresses. 

Solution   (1) Construction of Mohr’s circle. The axes for the normal and shear 

stresses in the Mohr’s circle are shown in figure (c), with 
1y

  positive to the right and 

1 1y z  positive downward. The center C of the circle is located on the 
1y

  axis at the 

point where the stress equals the average normal stress: 

aver
50 MPa 10 MPa

20 MPa.
2 2

y z 


  
     

Point A, representing the stresses on the y face of the element ( 0  ), has coordinates 

1
50y   MPa,    

1 1
40y z   MPa. 

Similarly, the coordinates of point B, representing the stresses on the z face ( 90   ), 

are 

1
10y  MPa,    

1 1
40y z  MPa. 

The circle is now drawn through points A and B with center at C and radius R equal to: 

 
2 2

22 50 MPa 10 MPa
40 MPa 50

2 2

y z
xyR

 


    
        

  
MPa. 

(2) Stresses on an element inclined at 45   . These stresses are given by the 

coordinates of point D, which is at an angle 2 90    from point A (figure (c)). To 

evaluate these coordinates, we need to know the angle between line CD and the 

negative 
1y

  axis (that is, angle 2DCP ), which in turn requires that we know the angle 

between line CA and the negative 
1y

  axis (angle 2ACP ). These angles are found from 

the geometry of the circle as follows: 

2
40 MPa 4

tan
30 MPa 3

ACP   ,    2 53.13ACP   , 

2 290 90 53.13 36.87DCP ACP       . 
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(a) Element in plane stress; (b) stresses acting on an element oriented at 40   ; (c) the 

corresponding Mohr’s circle; (d) principal stresses, and (e) maximum shear stresses. (Note: All 
stresses on the circle have units of MPa) 
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Knowing these angles, we can obtain the coordinates of point D directly from the 

figure: 

  
1

20 MPa 50 MPa cos36.87 60 MPa,y        

  
1 1

50 MPa sin36.87 30 MPa.y z     

In an analogous manner, we can find the stresses represented by point D , which 

corresponds to a plane inclined at an angle 135    (or 2 270  ): 

  
1

20 MPa 50 MPa cos36.87 20 MPa,y       

  
1 1

50 MPa sin36.87 30 MPa.y z       

These stresses are shown in Fig. b on a sketch of an element oriented at an angle 

45    (all stresses are shown in their true directions). 

Note. The sum of the normal stresses is equal to y z   or – 40 MPa. 

(3) Principal stresses. They are represented by points 1P  and 2P  on Mohr's 

circle. The algebraically larger principal stress (represented by point 1P ) is 

1 20 MPa 50 MPa 30 MPa,      

as seen by inspection of the circle. The angle 
1

2 p  to point 1P  from point A is the angle 

1ACP  measured counterclockwise on the circle, that is, 

11 2 53.13 180 233.13pACP       ,    
1

116.6p   . 

Thus, the plane of the algebraically larger principal stress is oriented at an angle 

1
116.6p   . 

The algebraically smaller principal stress (point 2P ) is obtained from the circle in 

a similar manner: 

3 20 MPa 50 MPa 70 MPa.       

The angle 
2

2 p  to point 2P  on the circle is 53.13°. The second principal plane is 

defined by the angle 
2

2 26.6p   . 

The principal stresses and principal planes are shown in Fig. (d). 

Note. The sum of the normal stresses is equal to y z   or – 40 MPa. 
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(4) Maximum shear stresses. The maximum positive and negative shear stresses 

are represented by points 2S  and 2S  on Mohr's circle (figure (c)). Their magnitudes, 

equal to the radius of the circle, are 

max 50  MPa. 

The angle 1ACS  from point A to point 1S  is 90 53.13 143.13    , and therefore the 

angle 
1

2 s  for point 1S  is 

1
2 143.13s   . 

The corresponding angle 
1s

  to the plane of the maximum positive shear stress is one-

half that value, or 
1

71.6s   , as shown in figure (e). The maximum negative shear 

stress (point 2S  on the circle) has the same numerical value as the positive stress 

(50 MPa). 

The normal stresses acting on the planes of maximum shear stress are equal to 

aver , which is the coordinate of the center C of the circle ( 20 MPa). These stresses 

are also shown in figure (e).  

Note. The planes of maximum shear stress are oriented at 45° to the 

principal planes. 

6   Examples of Simplified Analytical and Graphical Solutions of the Problems of 

Plane Stress State 

6.1   Direct problem of plane stress state. Determination of stresses on inclined 

planes 

Example 1 

Given: 1 80  MPa, 2 20  MPa. 

It is necessary to determine the stresses on the 

plane of general position with the normal at 

30     relative to 1  direction and also the 

stresses on perpendicular plane. 

Analytical solution 

2 2
1 2cos sin      


1
 


1
 

n
 





 



 



 



 


2
 

 



V. DEMENKO      MECHANICS OF MATERIALS    2020 
 

 

10/28/2020 11:40:40 AMW:\+МЕХАНИКА МАТЕРИАЛОВ W\++НМКД АНГЛ\082 LECTURES 2020\08 Two-dimensional (Plane) Stress State. Graphical Method of Stress State 
Analysis.doc 

44 

       2 280 cos 30 20 sin 30          

2 2
3 1

80 20 65
2 2

   
      

  
MPa, 

       2 2 2 2
1 2sin cos 80 sin 30 20 cos 30                

22
1 3

80 20 35
2 2

  
     

   
MPa. 

Checking: 

1 2        , 

 80 20 65 35   , 

   
 1 2 80 20

sin 2 sin 60 26
2 2


 

 
  

      МPа, 

26      МPа. 

Graphical solution using Mohr’s circles. 

Given: stresses on the faces of the 

element are described by two points 

lying on the diameter of Mohr’s 

circle in system of coordinates 

 ,  : point А  1,0 , point В 

 2,0 . 

It is necessary to determine the 

coordinates of the point С  ,    

and point D  ,   , which belong 

to the diameter of the Mohr’s circle. 
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Example 2 

Given: Stress state of the element is described by the 

stresses on two mutually perpendicular planes: 

1 400   MPa, 3 400    MPa. 

It is necessary to determine the stresses on the plane 

of general position with the normal at 

45    relative to direction of 1 . 

Analytical solution 

2 2
1 3cos sin      

       2 2400 cos 45 400 sin 45 0         , 

       2 2 2 2
1 3sin cos 400 sin 45 400 cos 45 0               . 

Checking: 

1 3        , 

 400 400 0 0    , 

   
 1 3 400 400

sin 2 sin 90 400
2 2


 

 
  

      MPa, 

400      МПа. 

Graphical solution using Mohr’s circle 

Given: stresses on the faces of the element 

are represented by two points lying on the 

diameter of the Mohr’s circle: point А 

 1,0 , point В  3,0 . 

It is necessary to determine coordinates of 

the point С  ,    and point D  ,   , 

lying on the diameter of Mohr’s circle 

inclined at the angle 2 90     (clockwise 

rotation). 
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6.2   Inverse problem of plain stress state. Determination of principal planes 

position and values of principal stresses 

Example 3    

Given: 

65 MPa
35 MPa









 ,       ,    26 MPa  . 

It is necessary to find principal stresses and 

position of principal planes, i.e.  

?p   max
min

?   

Analytical solution 

1. Position of principal plane is determined by the angle 

 
   0

2 262 52
2 1.73

65 35 30
tg 

 




 


      

   
, 

30p    . Note, that p  should be originated from   direction and to be clockwise. 

 
2 2

max
min

1
4

2 2

 
  

 
   


    

   
      

2 265 35
65 35 4 26 50 30

2

  
         MPa 

1 80 MPa  ,    2 20 MPa  . 

Graphical solution 

Given: 

point M  ,    and point N 

 ,   , which belong to Mohr’s 

circle and are lying on its diameter. 

It is necessary to determine position 

of the point K  1,0  and point L 

 2,0 , also lying on the Mohr’s 

circle and belonging to its diameter. Solution is evident from the Fig. 

 

  

    

        

    

 2   

 1   

    

 0  =  - 30  0   

    

    

    

 

 
   

 3    1   

35  
 

   

65     

N (  
 ,    )   

M (   ,    )   

L (  2 , 0)   K (  1 , 0)   

+26   

- 26  

Направление   
1   

 


