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LECTURE 9   State of Strain at a Point of Deformable Solid 

1   General Definition of Extensional and Shear Strain 

Extensional strain is the change in length of a line segment divided by the 

original length of the line segment in the deformable solid under external loading 

(Fig. 1). 

To define the extensional (linear) 

strain in a direction n at a point P in a body, 

we take an infinitesimal line segment of 

length s , in direction n, starting at P as 

shown in Fig. 2. That is, we take the 

infinitesimal line segment PQ of length s  

as the original line segment. After 

deformation, the line segment PQ becomes 

the infinitesimal arc P*Q* with arclength 

*s , as shown in Fig. 3. To determine the 

extensional strain right at point P, we need 

to start with a very short length s , that is, 

we must pick Q very close to point P. By 

picking Q closer and closer to P, we get, in the limit as 0s  , the extensional strain 

right a point P. Then, the extensional strain at point P in direction n, denoted by ( )n P  

is defined by 

0

*
( ) limn

s

s s
P

s

 




 
  

 
.    (1) 

When a body deforms, the change in angle that occurs between two line 

segments that were originally perpendicular to each other is called shear strain. To 

define the shear strain, let us consider the undeformed body in Fig. 3 (left) and the 

deformed body in Fig. 3 (right). Let PQ and PR be infinitesimal line segments in the n 

direction and t direction, respectively, in the undeformed body. After deformation, line 

 

Fig. 1   Deformable solid under external 

loading 
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segments PQ and PR become arcs P*Q* and P*R*. Secant lines P*Q* and P*R* 

define an angle *  in the deformed body. 

 

Fig. 2   The infinitesimal line segment used to define extensional strain 

 

Fig. 3   The angles used to define shear strain 

In the limit, as we pick Q and R closer and closer to P, the angle *  approaches the 

angle between tangents to the arcs at P*, shown as dashed lines in Fig. 3 (right). The 

shear strain between line segments extending from P in directions n and t is defined by 

the equation 

 ( ) lim 90 *
Q P
R P

P 



       (2) 
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It is important to note that extensional strain   and shear strain   vary with position in 

a body and with the orientation of the reference directions not only on the solid surface 

but also inside it. We will continue strain analysis applying the concept of strain 

element with infinitesimal dimensions. 

2   Strain State at a Point of Deformable Solid 

A set of strains occurring along different axes and on different planes passing 

through a given point is called the state of strain at the point. 

A change in shape and volume of a body is caused by displacements of its 

points. The displacements are caused by stresses applied to the faces of the stress 

element (see Fig. 4). The components of the total displacement vector along the x, y and 

z axes are denoted by U, V and W respectively. 

 

Fig. 4 

Relationship between strain and displacement in uniaxial stress state. 
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In the most simple case of axial deformation illustrating on Fig. 5 first, third and 

fifth components of combined stress state, shown on Fig. 4 relationship between 

longitudinal strain and axial displacement is clear from Fig. 5. A-point is displaced 

along x-axis with u displacement, and B-point is displaced with increment u, i.e. with 

u du  displacement. Elongation of AB segment is 

' ' ( )A B AB dx u du u dx du       . Then relative strain x  equals to 

x
du

dx
  .      (3) 

 

 
Fig. 5 

Relationship between strain and displacement components in three-

dimensional stress state. 

Consider as the plane problem a segment AB whose direction coincides with the 

x axis (see Fig. 6). The distance between the points A and B is selected as infinitely 

little. Denote it by dx. The components of the displacement vector at the point B differ 

from those at the point A by amounts corresponding to the change in coordinate. 
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Fig. 6 

The increment in length of the segment AB onto x axis is 
U

dx
x




. This increment 

is the absolute elongation, i.e.: 

1 1AB
U

l A B AB dx
x




  


.    (4) 

The ratio of the length increment of the element AB to its original length is called 

longitudinal relative deformation or linear strain (relative elongation): 

AB
x

U
dx

l Ux

AB dx x





  


.    (5) 

Similarly, 

y
V

y






; z
W

z






.        (6) 

The angle of rotation of the segment AB in the xy plane is equal to the ratio of the 

difference between the displacement of the points B and A along the x axis to the length 

of the segment dx, i.e., 

1
V

x






.         (7) 
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The angle of rotation of the segment AC in the xy plane is 

2
U

y






.          (8) 

The sum of the angles 1  and 2  represents the change in right angle BAC i.e., 

the angle of shear in the xy plane 

yx
V U

x y


 
 
 

.               (9) 

The expressions for the angles of shear in the other two coordinate planes can be 

derived in a similar way. 

Thus we have the following relations between displacements and strains at a 

point 

x
U

x






; y
V

y






; x
W

z






; 

xy
U V

y x


 
 
 

; yz
V W

z y


 
 
 

; zx
W U

x z


 
 
 

.  (10) 

The analysis of the state of strain shows that it possesses properties closely 

similar to those of the state of stress. 

3   Hooke's Law 

As has been established by the results of experimental tests (Figs 7–9) of 

specimens made from various structural materials, there exists a direct proportionality 

between normal stresses   acting in cross-section and the strain , though certain 

limits (Fig. 8). 

This relationship, which is the principal one in mechanics of materials is called 

Hooke's law and written as 

E  ,      (11) 

where   is normal stress, proportionality factor E is called the modulus of elasticity 

(Young’s modulus);  is relative elongation (strain). It is necessary to know that the 

elasticity modulus is dependent on the temperature (see Fig. 10). 
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Fig. 7   Experimental device for material 

tensile mechanical tests 

Fig. 8   Stress-strain curve (diagram) showing 

elastoplastic behavior of ductile material 

 

Fig. 9 Specimens used in tensile mechanical tests 

Relative elongation is 

dimensionless and is often given as 

percentage of the original length: 

% 100%
l

l


  .  (12) 

The elastic modulus E is 

measured in the same units as the stress 

, i.e. in Pascals or megaPascals 

2

N
Pa

m

 
 

 
. A stress of 1 Pa is very 

small. 1 MPa = 10
6
 Pa (ten to the power 

of six). 

The moduli of elasticity for various engineering materials are shown in Table 1. 
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Fig. 10   Dependence of the Young’s modulus on 

the temperature for different materials 
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Table 1   Modulus of Elasticity Values for Various Engineering Materials (Room-

Temperature Conditions) 

Material 
Modulus of Elasticity 

GPa 106 psi 

1 2 3 

METALS AND METAL ALLOYS 

Plain Carbon and Low Alloy Steels 

Steel alloy A36 207 30 

Steel alloy 1020 207 30 

Steel alloy 1040 207 30 

Steel alloy 4140 207 30 

Steel alloy 4340 207 30 

Stainless alloy 304 193 28 

Stainless alloy 316 193 28 

Stainless alloy 405 200 29 

Stainless alloy 440A 200 29 

Stainless alloy 17-7PH 204 29.5 

Cast Irons 

Gray irons  

• Grade G1800 

 

66-97
a
 

 

9.6-14
a
 

• Grade G3000 90-113
a
 13.0-16.4

a
 

• Grade G4000 110-138
a
 16-20

a
 

Ductile irons  

• Grade 60-40-18 

 

169 

 

24.5 

• Grade 80-55-06 168 24.4 

• Grade 120-90-02 164 23.8 

Aluminum Alloys 

Alloy 1100 69 10 

Alloy 2024 72.4 10.5 

Alloy 6061 69 10 

Alloy 7075 71 10.3 

Alloy 356.0 72.4 10.5 

Copper Alloys 

C11000 (electrolytic tough pitch) 115 16.7 

C17200 (beryllium-copper) 128 18.6 

C26000 (cartridge brass) 110 16 

C36000 (free-cutting brass) 97 14 

C71500 (copper-nickel, 30%) 150 21.8 

C93200 (bearing bronze) 100 14.5 

Magnesium Alloys 

Alloy AZ31B 45 6.5 

Alloy AZ91D 45 6.5 

Titanium Alloys 

Commercially pure (ASTM grade 1) 103 14.9 

Alloy Ti-5Al-2.5Sn 110 16 
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Alloy Ti-6Al-4V 114 16.5 

Precious Metals 

Gold (commercially pure) 77 11.2 

Platinum (commercially pure) 171 24.8 

Silver (commercially pure) 74 10.7 

Refractory Metals 

Molybdenum (commercially pure) 320 46.4 

Tantalum (commercially pure) 185 27 

Tungsten (commercially pure) 400 58 

Miscellaneous Nonferrous Alloys 

Nickel 200 204 29.6 

Inconel 625 207 30 

Monel 400 180 26 

Haynes alloy 25 236 34.2 

Invar 141 20.5 

Super invar 144 21 

Kovar 207 30 

Chemical lead 13.5 2 

Tin (commercially pure) 44.3 6.4 

Lead-Tin solder (60Sn-40Pb) 30 4.4 

Zinc (commercially pure) 104.5 15.2 

Zirconium, reactor grade 702 99.3 14.4 

GRAPHITE, CERAMICS, AND 

SEMICONDUCTING MATERIALS 

Aluminum oxide  

• 99.9% pure 

 

380 

 

55 

• 96% 303 44 

• 90% 275 40 

Concrete 25.4-36.6
a
 3.7-5.3

a
 

Diamond  

• Natural 

 

700-1200 

 

102-174 

• Synthetic 800-925 116-134 

Gallium arsenide, single crystal 

• In the (100) direction 

85 12.3 

• In the (110) direction 122 17.7 

• In the (111) direction 142 20.6 

Glass, borosilicate (Pyrex) 70 10.1 

Glass, soda-lime 69 10 

Glass ceramic (Pyroceram)  120 17.4 

Graphite   

• Extruded 11 1.6 

• Isostatically molded 11.7 1.7 

Silica, fused 73 10.6 

Silicon, single crystal   
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• In the (100) direction 129 18.7 

• In the (110) direction 168 24.4 

• In the (111) direction  187 27.1 

Silicon carbide 

• Hot pressed 

 

207-483 

 

30-70 

• Sintered 207-483 30-70 

Silicon nitride 

• Hot pressed 

 

304 

 

44.1 

• Reaction bonded 304 44.1 

• Sintered 304 44.1 

Zirconia, 3 mol% Y2O3 205 30 

POLYMERS 

Elastomers 

• Butadiene-acrylonitrile (nitrile) 

0.0034
b
 0.00049

b
 

• Styrene-butadiene (SBR) 0.002-0.010
b
 0.0003-0.0015

b
 

Epoxy 2.41 0.35 

Nylon 6,6 1.59-3.79 0.230-0.550 

Phenolic 2.76-4.83 0.40-0.70 

Polybutylene terephthalate (PBT) 1.93-3.00 0.280-0.435 

Polycarbonate (PC) 2.38 0.345 

Polyester (thermoset) 2.06-4.41 0.30-0.64 

Polyetheretherketone (PEEK) 1.10 0.16 

Polyethylene 

• Low density (LDPE) 

 

0.172-0.282 

 

0.025-0.041 

• High density (HDPE) 1.08 0.157 

• Ultrahigh molecular weight (UHMWPE) 0.69 0.100 

Polyethylene terephthalate (PET) 
2.76-4.14 0.40-0.60 

Polymethyl methacrylate (PMMA) 2.24-3.24 0.325-0.470 

Polypropylene (PP) 1.14-1.55 0.165-0.225 

Polystyrene (PS) 2.28-3.28 0.330-0.475 

Polytetrafluoroethylene (PTFE) 0.40-0.55 0.058-0.080 

Polyvinyl chloride (PVC) 2.41-4.14 0.35-0.60 

FIBER MATERIALS 

Aramid (Kevlar 49) 
131 19 

Carbon (PAN precursor) 

• Standard modulus 

 

230 

 

33.4 

• Intermediate modulus 285 41.3 

• High modulus 400 58 

E Glass 72.5 10.5 

COMPOSITE MATERIALS 

Aramid fibers-epoxy matrix ( 0.60fV  ) 

Longitudinal 

 

76 

 

11 
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Transverse 5.5 0.8 

High modulus carbon fibers-epoxy matrix ( 0.60fV  )   

Longitudinal 220 32 

Transverse 6.9 1.0 

E glass fibers-epoxy matrix ( 0.60fV  ) 

Longitudinal 45 6.5 

Transverse 12 1.8 

Wood  

• Douglas fir (12% moisture) 

Parallel to grain 

 

 

10.8-13.6
c
 

 

 

1.57-1.97
c
 

Perpendicular to grain 0.54-0.68
c
 0.078-0.10

c
 

• Red oak (12% moisture) 

Parallel to grain 

 

11.0-14.1
c
 

 

1.60-2.04
c
 

Perpendicular to grain 0.55-0.71
c
 0.08-0.10

c
 

a
 Secant modulus taken at 25% of ultimate strength. 

b
 Modulus taken at 100% elongation. 

c
 Measured in bending. 

4   Lateral Strain. Poisson's Ratio 

Experiments show that (within elasticity limits) the extension of a bar in the 

longitudinal direction is accompanied by its proportional contraction in the lateral 

direction (Fig. 11). 

 

 

Fig. 11   Unidirectional tension of stress element and corresponding contraction of its edges in 

its lateral directions. 
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If we consider x-direction then 

,

,

.

long x

lat y

lat z

dx dx dx dx

dx dx

dy dy dy dy

dy dy

dz dz dz dz

dz dz

 
 

 
 

 
 

 
  

 
  

 
  

     (13) 

As experiments show, 

lat long      or      (14) 

,

.

y x

z x

 

 

 

 
      (15) 

where 

lat

long





 .      (16) 

The absolute magnitude of this ratio is called the Poisson's ratio. 

The quantity  characterizes the properties of a material and is determined 

experimentally. The numerical values of  lie within the limits from 0.25 … 0.35 for all 

metals and alloys. Poisson’s ratio values for various engineering materials are shown in 

Table 2. 

Table 2   Poisson's Ratio Values for Various Engineering Materials (Room-

Temperature Conditions) 

Material 
Poisson’s 

Ratio 
Material 

Poisson's 

Ratio 

1 2 3 4 

METALS AND METAL ALLOY 

Plain Carbon and Low Alloy Steels 

Refractory Metals 

Molybdenum (commercially pure) 0.32 

Steel alloy A36 0.30 

Steel alloy 1020 0.30 Tantalum (commercially pure) 0.35 

Steel alloy 1040 0.30 

Steel alloy 4140 0.30 Tungsten (commercially pure) 0.28 



V. DEMENKO      MECHANICS OF MATERIALS    2020 
 

 

11/18/2020 3:24:14 PMW:\+МЕХАНИКА МАТЕРИАЛОВ W\++НМКД АНГЛ\082 LECTURES 2020\09 State of Strain at a Point of Deformable Solid.doc 

13 

Steel alloy 4340 0.30 

Stainless Steels Miscellaneous Nonferrous Alloys 

Stainless alloy 304 0.30 Nickel 200 0.31 

Stainless alloy 316 0.30 Inconel 625 0.31 

Stainless alloy 405 0.30 Monel 400 0.32 

Stainless alloy 440A 0.30 Chemical lead 0.44 

Stainless alloy 17-7PH 0.30 Tin (commercially pure) 0.33 

Cast Irons Zinc (commercially pure) 0.25 

Gray irons 

• Grade G1800 

 

0.26 

Zirconium, reactor grade 702 0.35 

GRAPHITE, CERAMICS, AND 

SEMICONDUCTING MATERIALS • Grade G3000 0.26 

• Grade G4000 0.26 Aluminum oxide  

Ductile irons  • 99.9% pure 0.22 

• Grade 60-40-18 0.29 • 96% 0.21 

• Grade 80-55-06 0.31 • 90% 0.22 

• Grade 120-90-02 0.28 Concrete 0.20 

Aluminum Alloys Diamond  

Alloy 1100 0.33 • Natural 0.10-0.30 

Alloy 2024 0.33 

Alloy 6061 0.33 • Synthetic 0.20 

Alloy 7075 0.33 Gallium arsenide 

• (100) orientation 

 

0.30 Alloy 356.0 0.33 

Copper Alloys Glass, borosilicate (Pyrex) 0.20 

C11000 (electrolytic tough pitch) 0.33 Glass, soda-lime 0.23 

Glass ceramic (Pyroceram) 0.25 

C17200 (beryllium-copper) 0.30 Silica, fused 0.17 
 

 

C26000 (cartridge brass) 0.35 Silicon  

C36000 (free-cutting brass) 0.34 • (100) orientation 0.28 

C71500 (copper-nickel, 30%) 0.34 • (111) orientation 0.36 

C93200 (bearing bronze) 0.34 Silicon carbide  

Magnesium Alloys • Hot pressed 0.17 

Alloy AZ31B 0.35 • Sintered 0.16 

Alloy AZ91D 0.35 Silicon nitride  

Titanium Alloys • Hot pressed 0.30 

Commercially pure (ASTM grade 1) 0.34 • Reaction bonded 0.22 

• Sintered 0.28 

Alloy Ti-5Al-2.5Sn 0.34 Zirconia, 3 mol% Y2O3 0.31 

Alloy Ti-6Al-4V 0.34 POLYMERS 

Precious Metals Nylon 6,6 0.39 

Gold (commercially pure) 0.42 Polycarbonate (PC) 0.36 

Platinum (commercially pure) 0.39 Polystyrene (PS) 0.33 

Polytetrafluoroethylene (PTFE) 0.46 
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Silver (commercially pure) 0.37 

COMPOSITE MATERIALS Polyvinyl chloride (PVC) 0.38 

Aramid fibers-epoxy matrix 

( 0.6fV  ) 

0.34 FIBER MATERIALS 

E Glass 0.22 

High modulus carbon fibers-epoxy 

matrix ( 0.6fV  ) 

0.25 E glass fibers-epoxy matrix 

( 0.6fV  ) 

0.19 

5   Generalized Hooke's Law for three dimensional stress-strain state 

 
 

Fig. 12 Fig. 13 

Generalized Hooke’s law represents the equations which connect components of 

stress and strain states. To write these equations, we will consider the stress element 

under the principal stresses loading (see Figs 12, 13). Our goal will be in finding the 

relative elongations (strains) of three mutually perpendicular edges along x, y, z axes. 

They will be denoted as x , y , z  (x, y, z directions are principal). 

Given: x , y , z , , E. 

It is required to determine the quantities x , y , z . 

Let’s note one more that the x, y and z axes coincide with the principal axes. The 

relative elongation (linear strain) in the direction of the x axis due to the stress x  is 

x E . 
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The stresses y  and z  produce elongations of opposite sign (lateral) along the 

x axis which are equal to 
y

E


  and z

E


 . Consequently, total relative elongation 

(strain) with respect to the x axis 

yx z
x

E E E

 
     .        (17) 

Similar expressions are obtained by analogy for y  and z . Thus 

 

 

 

1
,

1
,

1
.

x x y z
E

y y x z
E

z z y x
E

    

    

    

   
 

   
 

   
 

    (18) 

If the x, y and z axes don't coincide with the principal ones, then we will have 

 

 

 

1
,

1
,

1
.

x x y z
E

y y x z
E

z z y x
E

    

    

    

   
 

   
 

   
 

    (19) 

but six additional relationships, connecting shear stresses and angular strains it is 

necessary to add in this case. 

6   Relative Change of Volume (Unit Volume Change) 

The initial volume of any infinitesimally small element before deformation 

(see Fig. 14): 

0dV dxdydz .  (20) 

After deformation, the lengths of the element 

increase to dx dx , dy dy  and dz dz  

(see Fig. 14). Thus, the volume of the element 

after deformation is 

   dV dx dx dy dy dz dz      .  (21) 

The relative change of the volume (unit 

volume change) 
 

Fig. 14 
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0

0 0

1 1V
dV dV dV dx dx dy dy dz dz

e
dV dV dx dy dz

         
         

    
 

      1 1 1 1 1 1 1x y z y x xy z                   

1 1 .z y y z x x z x y x y z x y z                           

In result, 

V x y ze      .     (22) 

Substituting expressions (17) into formula (20), we find 

   
1 1

V x y z y x ze
E E

                  
 

 
1 1 2

z x y x y z
E E


      

          
, 

1 2
V x y ze

E


  


     ,    (23) 

or  

 1 2 3
1 2

Ve
E


  


       (24) 

in terms of principal stresses. 

7   Hook’s Law in Shear 

Suppose now that there is a state 

of stress in which the faces of an 

isolated element are only acted on by 

shearing stresses   (see Fig. 15). Such 

a state of stress is called pure shear. 

Principal stresses and directions in 

pure shear are situated at 45  relative 

to directions of shear (see Fig. 16). 

Principal stresses are equal 1 yz    

(in OA direction), 2 0  , 3 yz   . 
 

Fig. 15 
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Fig. 16 

It is seen from Fig. 15, that the quantity S  is absolute shear. 

Let us calculate relative angle of shear:  

tg yz yz
S

a


    .     (25) 

This relationship is valid because S a . Principal linear strain along OA 

direction is  

1
1

l

OA


  .         (26) 

Because  

1 cos45
2

S
l S


     ,     (27) 

and  

2OA a ,      (28) 

we found that  

1
1 1

22 2

S S

aa

 
   .     (29) 

Substituting (25) in (29) is resulted in  

1
1

2
xy   .      (30) 

Otherwise, let us find the relative elongation 1  from generalized Hooke’s law for pure 

shear deformation ( 1 yz   , 2 0  , 3 yz   ): 
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 1 1 2 3
1 1

yz
E E


     


      ,      (31) 

Equating (30) and (31)  

1 1

2
yz yz

E


 


 ,    

 2 1
yz yz

E
 





, 

where proportionality factor 

 2 1

E
G





     (32) 

is called modulus in shear (shear modulus) 

Finally, we have 

yz yzG  .      (33) 

This relationship is called Hook's law in shear. 

8   Strain Energy and Strain Energy Density 

Strain energy is a fundamental concept in applied mechanics, and strain-energy 

principles are widely used for determining the response of machines and structures to 

loads. Now we introduce the subject of strain energy in its simplest form by 

considering only axially loaded members subjected to static loads. 

To illustrate the basic ideas, let us consider a prismatic bar subjected to a tensile 

force (see Fig. 17). We assume that the load is applied slowly, so that is gradually 

increases from 0 to its maximum value P. Such a load is called a static load because 

there are no dynamic or inertial effects due to motion. The bar gradually elongates as 

the load is applied, eventually reaching its maximum elongation   at the same time 

that the load reaches its full value P. There after, the load and elongation remain 

unchanged. 
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During the loading, the load P 

moves slowly through the distance   and 

does a certain amount of work. To 

evaluate this work, we recall from 

elementary mechanics that a constant force 

does work equal to the product of the force 

at the distance through which it moves. 

However, in our case the force varies in 

magnitude from 0 to its maximum value 

P. To find the work done by the load under 

these conditions, we need to know the 

manner in which the force varies. This 

information is supplied by a load-displacement diagram, which is plotted for linearly 

elastic material in Fig. 18. On this diagram the vertical axis represents the axial load 

and the horizontal axis represents the corresponding elongation of the bar. 

The work done by the load is 

represented in the figure by the area of 

the shaded strip below the load-

displacement curve. In geometric terms, 

the work done by the load is equal to 

the area below the load-displacement 

curve. 

When the load stretches the bar, 

strains are produced. The presence of 

these strains increases the energy level of 

the bar itself. Therefore, a new quantity, 

called strain energy, is defined as the 

 

Fig. 17   Prismatic bar subjected to a statically 

applied load 

P
A

P

O

B

2

P
U 

 

Fig. 18   Load-displacement diagram for a bar of 

linearly elastic material. 
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energy absorbed by the bar during the loading process. From the principle of 

conservation of energy, we know that this strain energy is equal to the work done by 

the load provided no energy is added or subtracted in the form of heat. Therefore,  

2

P
U W


       (34) 

in which U  is the symbol of strain energy, W is symbol of work. Sometimes strain 

energy is referred to as internal work to distinguish it from the external work done by 

the load. 

In Fig. 18, strain energy is the area of the shaded triangle OAB. The principle that 

the work of the external loads is equal to the strain energy for the case of linearly 

elastic behavior was first stated by the French engineer B.P.E. Clapeyron and is known 

as Clapeyron theorem. 

Since Hooke’s law establishes linear relationship between the load and 

elongation or between the stress and strain in linearly elastic material, elongation of the 

bar 0l l l     is given by the equation 

PL

EA
  ,      (35) 

Because /P A  , 0/l l  , E  . 

Combining this equation with Eq. 34 enables us to express the strain energy for a 

linearly elastic bar in the following form 

2

2

P L
U

EA
 .      (36) 

In many situations it is convenient to use a quantity called strain-energy 

density, defined as the strain energy per unit volume of material. Expressions for 

strain-energy density in the case of linearly elastic materials can be obtained from the 

formula for strain energy of a prismatic bar (Eq. 36). Since the strain energy of the bar 

is distributed uniformly throughout its volume, we can determine the strain-energy 

density by dividing the total strain energy U by the volume AL of the bar. Thus, the 

strain-energy density, denoted by the symbol 0U , can be expressed in the form 
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2

0 22

P
U

EA
 .     (37) 

If we replace /P A  by the stress  , we get  

2

0
1

2 2
U

E


  .     (38) 

This equation give the strain-energy density in a linearly elastic material in terms of the 

normal stress   and the normal strain  . This equation corresponds to uniaxial stress 

state at a point of the bar. 

The strain-energy stored in an elementary volume of elastic solid in its 

deformation in three-dimensional stress-state is determined by the total work done by 

the internal forces distributed over the surface of this stress element. The normal force 

xdydz  does work on the displacement xdx dx   (see Fig. 13). This work of internal 

elastic force is given by formula 

1 1
( )

2 2
x x x x

dx
dx dydz dxdydz

dx


    

 
  

 
,   (39) 

where x  is the strain along the x axis. 

Similar expressions are obtained for the work done by two other normal 

components: 
1

2
y ydzdx dy  ;    

1

2
z zdxdy dz  . 

Then total strain energy stored in an 

elementary volume dxdydz  (see Fig. 19) is: 

 
1

2
x x y y z zdU dxdydz         .   

(40) 

For this stress element, strain-energy density 

 0
1

2
x x y y z z

dU
U

dV
         . (41) 

Let’s express strains in terms of stresses by generalized Hook’s law: 

 

Fig. 19 
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 

 

 

1
,

1
,

1
.

x x y z

y y x z

z z x y

E

E

E

    

    

    

   
 

    

   
 

    (42) 

Then 

 2 2 2
0

1
2

2
x y z x y y z z xU

E
               
 

.       (43) 

Conclusion. Strain energy describes the possibility of elastic solid to change its shape 

and also volume in deformation. 

 

Example 1.   Elastic aluminum block R is confined between plane parallel walls of 

absolutely rigid block S (see Fig. 20). A uniformly distributed pressure p is applied to 

the top of the block by a resultant force F. Disregarding friction between the blocks 

find stresses on the R block faces and strains of its edges. Calculate also its relative 

change in volume (dilatation). 

Given: block R dimensions:   21 1 1 10   m. Its mechanical properties: 70E  GPa, 

0.3  . Pressure 60p  MPa. 

 

Fig. 20 
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Due to disregarding friction, elastic block will be under principal stresses. Its 

stress state may be described by Fig. 21. It is 

evident that 60z   MPa, 0y  , 0x  , 

0z  , 0y  , 0x  . 

Three unknown components of stress–strain 

state we will determine using the equations of 

generalized Hooke’s law (19): 

 

 

 

1
,

1
,

1
,

x x y z
E

y y x z
E

z z y x
E

    

    

    

   
 

   
 

   
 

 

or for our case (in MPa): 

  

  

   

3

3

3

1
0 0.3 60 ,

70 10
1

0 0.3 0 60 ,
70 10
1

60 0.3 0 .
70 10

x y

y y

z y

 

 

 

        


        


      
  

 

In result of solution we get 

18y   MPa,    333.4 10x
   ,    378 10z

   . 

Relative change in volume is 

  3 333.4 0 78 10 44.6 10Ve
         (volume decreases). 

Strain energy density is determined by formula (43): 

 2 2 2
0 1 2 3 1 2 2 3 3 1

1
2

2
U

E
               
 

. 

In our case of loading (in MPa): 

2 2 3
0 3

1
0 ( 18) ( 60) 0.6(0 ( 18) ( 60) 0) 65.3 10

2 70 10
U              

  
G/m

3
. 

 

Fig. 21 
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Example 2   An elastic aluminum block R with dimensions   21 1 1 10   m (Fig. 22) 

is compressed inside of an absolutely rigid array by the force F that applies a uniformly 

distributed pressure to the block equals to 60 MPa. Its elastic properties are 70E  GPа, 

0.3  . Determine stresses on the R block faces and strains of its edges. Calculate also 

its relative change in volume (dilatation) and strain energy density. 

  

Fig. 22 

Solution.  

Disregarding friction between the block and array 

stress state of the R block may be described by 

Fig. 23. It is evident that 60z   MPa, 

0x y   , 0x y   . 

Three unknown components of stress-strain state 

we will determine using the equations of 

generalized Hooke’s law (19): 

 

 

 

1
,

1
,

1
,

x x y z
E

y y x z
E

z z y x
E

    

    

    

   
 

   
 

   
 

 

or for our case (in MPa): 

 

Fig. 23 
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  

  

   

3

3

3

1
0 0.3 60 ,

70 10

1
0 0.3 60 ,

70 10

1
60 0.3 .

70 10

x x y

y y x

z x y

  

  

  

         



        



      

  

 

In result of solution we get    25.7y x    MPa,    364 10z
   , 

Unit volume change 

3 30

0

0 0 64 10 64 10V x y z
V V

e
V

    
            (volume decreases). 

Strain energy density is determined by formula (43). 

In our case of loading 0 3

1

2 70 10
U  

 
 

 2 2 2( 25.7) ( 25.7) ( 60) 2 0.3 ( 25.7) ( 25.7) ( 25.7) ( 60) ( 60) ( 25.7)                    
 

338 10   G/m
3
. 

 

 

 

 


