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LECTURE 13   Strength of a Bar in Pure Bending 
 

Bending is a type of loading under which bending moments and also shear 

forces occur at cross sections of a rod. If the bending moment is the only force factor 

acting in the section while the shearing force is absent, bending is called pure. 

In most cases, however, shearing forces occur as well as bending moments at 

cross sections of a rod. In this case bending is called transverse. 

The examples of structural elements subjected to plane bending are shown in 

Figs 1–8. 

  

Fig. 1   A bridge with movable girder Fig. 2   Beam of wide-flanged shape loaded by 

distributed load 

(a)

(b)

(c)

(d)

 

 

Fig. 3   Non-prismatic beams in bending: a) 

street lamp, b) bridge with tapered girders and 

pears, c) wheel strut of a small airplane, d) 

wrench handle 

Fig. 4   A tall signboard supported by two vertical 

beams consisting of thin-walled, tapered circular 

tubes 
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Fig. 5   Vertical solid wood and aluminum posts 

support a lateral load P 

Fig. 6   A pontoon bridge consisting of two 

longitudinal wood beams (balks) that span 

between adjacent pontoons and support the 

transverse floor beams (cheeses) 

 

 

Fig. 7   Plane bending of a beam ABCD 

developed by the force P applied to the cable 

Fig. 8   Simply supported wood beam 

Pure Bending 

Let us consider an infinitesimally small element of a beam dx (see Fig. 9). 

(1) The hypothesis of plane sections holds true for bending as well as for tension 

and torsion. Section AB, which was a plane before bending, has remained such after 

bending, but turned through a certain small angle d . 

(2) The plane AB continues to be perpendicular to the external surfaces of the 

beam. Therefore we have not the shearing stresses . 
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(3) The upper fibers of the beam became stretched, i.e. increased in length from 

ab to a'b', whereas the lower fibers became contracted from ef to e'f'. However the 

fibers don’t press each other. Therefore we haven't the normal stresses in 

perpendicular direction to the x axis. 

(4) There should be the line cd between the upper and lower fibers, which does 

not change its length on bending and is called the neutral layer. 

 

Fig. 9 

Note: All the layers of the beam which are parallel to the neutral layer, are stretched or 

contracted and it is true the following relationship 

x xE  .      (1) 

In Fig. 9 the radius of the neutral layer is denoted by  . 

1   Determination of Strains 

Let us consider the deformation of particular fiber (layer) ab of the beam, which 

is at a distance z from the neutral layer cd. 

The relative elongation of the layer ab is 

  
x

a b ab

ab
 ,     (2) 
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where    ' '   ab dx d cd c d  ,    ' ' ( ) a b z d  , 

whence 

  1
 

  x
d zd d z

z k z
d

    


  
.    (3) 

Note: the angle d  is small, the arch a'b' can be determined with a good accuracy as 

' ' ( ) a b z d  . Eq. 3 means, that the strains are distributed linearly between the 

layers. 

2   Determination of the Neutral Axis Position 

Due to tension-compression deformation of the fibers, the stresses can be found 

using Hooke's law: 

   x xz z E  ,      (4) 

whence it follows after substitution: 

  2 x
z

z E k z


.     (5) 

Thus in pure bending the stresses in the cross section vary according to a linear law 

with the proportionality factor 2k . The locus of points in the section which satisfies the 

condition 0x  is called the neutral axis of the section: 

 

Fig. 10 
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Let us determine the position of the neutral axis. It may be recalled that the sum 

of the projections of all forces in a cross section onto the x axis is equal to zero, since 

there are no normal forces in the bending of the beam. 

The elementary normal force acting on an elementary area 

 x x
z

dN dA E dA


.     (6) 

Summing over the entire area, we get: 

0 x

A

Ez
N dA


.     (7) 

Noting that the constant 
E


 is other than zero, it follows: 

0
A

zdA .      (8) 

This integral represents the static moment (first moment) of the section with respect to 

the neutral axis. Since the static moment is zero, the neutral axis passes through the 

centroid of a section (see Fig. 10). 

Otherwise 

0 z x

A

M ydA ,    (9) 

0 z

A

E
M zydA


,    0

A

E
zydA


,    

E
const


,    0 0   yz

A

zydA I . 

Hence the y and z axes are the principal axes of the section. 

3   Determination of Stresses 

For numerical determination of stresses, it is essential to find the radius of 

curvature   of the neutral layer of deflected beam. 

Elementary moment relative to the neutral axis: 

y xdM zdA . 
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Summing the elementary moments over the cross-sectional area and substituting 

x Ez  , we obtain: 

2
2 2

  
      

  
   y x y y

A A A A

Ez E E
M zdA dA z dA z dA I I

  
, 

whence we find the curvature of deflected axis of beam: 

1


y

y

M

EI
.      (10) 

Substituting the expression of curvature into the formula for x , we finally get 

  
y y

x
y y

M M zz
E Ez

EI I



;    

y
x

y

M z

I
 .   (11) 

The maximum bending stress occurs at the points most remote from the neutral 

axis: 

max

max


y
x

y

M z

I
 .     (12) 

The quotient max/yI z  is called the section(al) modulus in bending and is denoted by 

yW : 

max


y

y

I
W

z
, [m

3
].     (13) 

Thus 

max 
y

y

M

W
 .     (14) 

The diagram of bending stresses distribution along vertical z axis is shown in 

Fig. 11: 
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Fig. 11 

Formula (13) is fundamental in the analysis of rods subjected to bending. 

For a rod of rectangular section with sides b and h 

3

12
y

bh
I , max

2


h
z , 

2

6
y

bh
W . 

For a circular section 

4

64
y

d
I


, max

2


d
z , 

3

32
y

d
W


. 

4   Condition of Strength in Pure Bending 

Condition of strength is really an inequality in which maximum working 

stresses and allowable stresses for structural element material are compared: 

max

max
[ ] 

y
x

y

M

W
  .    (15) 

Considering the strength conditions, it is possible to solve three important 

engineering problems: 

(1) problem of checking the strength. For specified loads and geometrical 

dimensions of a cross section the maximum stress in the section (called the critical 

section) is determined using the formula 
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max

max

 
  
 
 

y

y

M

W
  

and compared with the allowable stress [ ] : 

max [ ]  ;      (16) 

(2) design problem. For the specified loads and allowable stresses the cross-

sectional area of a beam is determined by the formula: 

max

[ ]


y
y

M
W


;     (17) 

(3) problem of  allowable load: 

[ ] [ ]M Wy y  ,     (18) 

where [M] is the allowable load determined for the critical section of a beam. 

Example 1  Design problem in pure plane bending 

For a cantilever beam select the following 

sections: a) circular section; b) rectangular 

section with / 2h b ; and c) I-section, using 

[ ] 100 MPa. 

Bending moments diagram shows the 

constant value of internal bending moment 

10 kNmyM . 

To solve the problem, it is necessary 

to calculate the section modulus yW . Using condition of strength (14) we obtain  

3 6 6
max /[ ] 10 10 /100 10 100 10     y yW M  m

3
. 

In the case (a) (round section) according to expression (14) 

 

Fig. 12 
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3
6 2100 10 10 10

32

      y
d

W d


m,    480 10 A m
2
, 

In the case (b) (rectangle) 

2

6
y

bh
W ;    / 2h b ;    

 
2

6 22
100 10 5.3 10

6

     
b b

b m; 

210.6 10 h m;    456.2 10 A m
2
. 

In the case (c) 

690.3 10 I
yW m

3
,    I No14,    418.9 10 A m

2
, 

6118 10 I
yW m

3
,    I No14,    421.5 10 A m

2
, 

Note, that I A A A  (80 56.2 21.5)   

 

Fig. 13 

Which of those sections is more advantageous from the viewpoint of strength-to-

weight efficiency? Evidently, the I-section is the most efficient shape of cross section. 

For a beam to be efficient, most of the beam material should obviously be put as far as 

possible from the neutral axis. Remember, that for any section, the normal bending 

stress in a cross section of a beam is directly proportional to the distance from the 

neutral axis of the beam. 


