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LECTURE 14 Strength of a Bar in Transverse Bending

1 Introduction
As we have seen, only normal stresses occur at cross sections of a rod in pure
bending. The corresponding internal forces give the resultant bending moment at the
section.

In transverse bending, a shearing force Q, occurs at a section of a rod as well

as a bending moment. This force represents the resultant of elementary distributed
forces lying in the plane of the section. Consequently, in this case not only normal, but

also shearing stresses occur at cross section of a rod:

My = [ oyzdA, (1)
A

Q; = _[szdA- (2)
A

The appearance of shearing

stresses 7 is accompanied by shearing

!

strains . Hence any elementary

Fig. 1

section dA  undergoes  angular
displacement due to shear. The magnitude of normal stresses is not, however, sensibly
affected by the shearing forces. When the shearing force varies along the rod axis the

formula of pure bending introduces an error in the calculation of o :

(3)

M,z
O'x(z):—ly
y

By a simple analysis it may be shown that this error is of the order of h/l compared to
unity, where h is the dimension of the cross section in the plane of bending and | is the

length of a rod.
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2 V. DEMENKO  MECHANICS OF MATERIALS 2020

By definition the characteristic feature of a rod is that the dimensions its cross
section are much smaller than the length. Consequently, the quantity h/l is very small,

and so is the error involved.

2 Determination of Shearing Stresses

Let us estimate the shearing stresses in transverse bending. In general case of

external loading we have the element of the rod dx in equilibrium:

. b(z)
G, remaining part Gy +do, ~ q*
N1% /
Txz
My . jwy-l-d ]\/[y g Tozx -
X Y
I I D SR -y yXx  ______ ]
0. 0,4dQ,
dx dx

Fig. 2
Isolate an element of length dx from the rod. Divide the element in two parts by
longitudinal horizontal plane (layer) passed at a distance z from neutral layer and

consider the conditions of equilibrium of the upper part:

Y F=0: [ oydA+rb(2)dx— [ (oy +doy )dA=0. (4)
A* A*

We assume that the shearing stresses are uniformly distributed across the width of the

layer b(z):
[ oxdA+7,-b(z)dx— [ oydA- [ doydA=0,
A* A* A*
dM,
rb(2)dx = [ doydA, dale—z,

A* y

9/8/2020 3:04:40 PMW:\+MEXAHNKA MATEPVANOB W\++HMK[ AHII\082 LECTURES 2020\14 Strength of a Bar in Transverse Bending.doc



V. DEMENKO  MECHANICS OF MATERIALS 2020 3

dm,
rsz(z)dx=|— [ zdA,
y A*

where

[ 2dA=Sp*=S,*
A*

is static(al) moment (first moment) with respect to the y central axis of the portion of

the area located above (or below) the z layer:

dMm, S, *
r,b(z)dx = % .
y
Since
dM
dx %
we get
S *
rxz(z)zrzx(z):?zby — Juravsky formula. 5)
yb(2)

3 Examples of Shear Stress Distribution in Different Cross Sections

Example 1 Shear stress distribution along a height of rectangle

2" I %

z |z y HVQH Yy Tmax:%%
baby

b b

Fig. 3 Fig. 4
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bh3 . h h Y1 1[h?
b(Z):b, Iy:E, Sy :A*ZC:(E—Zjb(E'FZjE:E[T—Z ]b,

2
sz1 h™ 2
2\ 4 6Q h2 5
7(2) = 3 = ?f ——7
bh-b bh° | 4

_3Q
2 A

h:O.
7=—

N

Note, that maximum stress occurs at z=0 and are distributed uniformly along
y axis.

Example 2 Shear stress distribution along a height of round cross section
In this case we have:

AZ

l Tyz(2)
| l\li
1Ir vly Qf i llr Tmang%
i

Fig.5

4 Comparison of Normal and Shearing Stresses in Bending

My z
A () 1.(2)
" ~ J
Yy mB n.a. L/ i Tmax

0 ~ z '

z CI
BN : |

A O max
N

Fig. 6
1. Points A and A'.
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These points are most remote from the neutral axis. Shearing stresses are zero:

G4 Gy G 4 \(\- C 4
G 4 =0 xmax G 4" =0 xmax
Fig.7

2. PointB. oy =0. Shearing stresses are maximum:

B

. TR =Tmax

Fig.8
3. Points C and C'.

There is biaxial stress state at these points:

p.C' p.C

[ — -

i TXZ i TXZ
! e F—
Ox | Ox Gx [ Ox

’_/T_, f_/T_,

TZX TZX
Fig. 9

Let us determine the principal stresses using general formula:

oy+o, 1 2 2
0112(3):Mi§\/(0)(—02) +4Z'XZ .

2
i oy 1 2 2
Since o, =0, 1=+ 50X +41y,"
0'2—0,
oy 1 2 2
3:7)(—5 oy~ +4ty, .
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A comparison may be made of the absolute values of the maximum normal and
maximum shearing stresses on cross section of a prismatic rod. For example, for a

cantilever beam of rectangular section we have:

F
N ! S
b
Fig. 10
. Minax _ 6F 3F
X Woa  bh2 ™ 2bh’
whence
Tmax _ﬂ
Omax 4 '

This means that the maximum shearing stresses and the maximum normal stresses in
the cross section are in about the same ratio as the cross-sectional dimension of the
section and the length of the rod, i.e. the shearing stresses are appreciable less than
the normal stresses for rectangle cross section.

Because of the small magnitude of 7, the analysis of prismatic solid rods
subjected to transverse bending is made only on the basis of normal stresses as in
pure bending. Shearing stresses are not taken into consideration.

Therefore, the condition of strength in transverse bending of solid prismatic bars

M
O'max:ﬂg[a']- (6)
Wn.a.(y)

5 Curvature of a Beam

When loads are applied to a beam, its longitudinal axis is deformed into a curve.
As an example, consider a cantilever beam AB subjected to a load a F at the free end
(Fig. 11):
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(a)

Fig. 11
The initially straight axis is bent into a curve, called the deflection curve of the beam.

Let us construct a system of coordinate axes (x, y) with the origin located at a
suitable point on the longitudinal axis of the beam. We will place the origin at the fixed
support. The positive x axis is directed to the right, and the positive y axis is directed
upward.

The beam considered is assumed to be symmetric about the xy plane, which
means that the y axis is an axis of symmetry of the cross section. In addition, all loads
must act in the xy plane. As a consequence, the bending deflections occur in this same
plane, known as the plane of bending.

The deflection of the beam at any point along its axis is the displacement of that
point from its original position, measured in the y direction. We denote the deflection
by the letter &. It is important to note that the resulting strains and stresses in the beam
are directly related to the curvature of the deflection curve.

To illustrate the concept of curvature, consider again a cantilever beam subjected
to a load F acting at the free end (Fig. 12). The deflection curve of this beam is shown

at the bottom of the Fig. 12. For purposes of analysis, we will identify two points my
and m, on the deflection curve. Point my is selected at an arbitrary distance x from the
y axis and point m, is located at a small distance ds further along the curve. At each of

this points we draw a line normal to the tangent to the deflection curve, that is, normal
to the curve itself. This normals intersect at point O, which is the center of curvature
of the deflection curve. Because most beams have very small deflections and nearly flat
deflection curve, point O' is usually located much further from the beam that is
indicated in the Fig. 12.
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7 The distance mO" from the curve to the
y 4 TB centre of curvature is called the radius of
N - curvature p, and the curvature k is defined as
(a) the reciprocal of the radius of curvature. Thus,
o k = i. (7)
do P
|\ | |
Ay Curvature is a measure of how sharply a beam is
P B bent.
y my "2 From the geometry of triangle O'mym, we
\ - x :
N e obtain
- X . dx pd@=ds (8)
) in which d@ (measured in radians) is the
infinitesimal angle between the normals and ds
Fig. 12 is the infinitesimal distance along the curve

between points my and m,. Combining Egs (7)
and (8), we get

_dé 9)

k = —.
ds

1
Yo
It is interesting to note, that if the curvature is constant throughout the length of a curve,
the radius of curvature will also be constant and the curve will be an arc of a circle.

The deflections of a beam are usually very small compared to its length. Small
deflections mean that the deflection curve is nearly flat. Consequently, the distance ds
along the curve may be set equal to its horizontal projection dx (Fig. 12). Under this
conditions the equation for the curvature becomes

1 dé
k=—=—. (10)
o dx
Both the curvature and the radius of curvature are functions of the distance x. It follows
that the position O of the center of curvature also depends upon the distance x.
We will see that the curvature at a particular point on the axis of a beam depends

on the bending moment at that point and on the properties of the beam itself. Therefore,
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if the beam is prismatic and the material is homogeneous, the curvature will vary only
with the bending moment. Consequently, a beam in pure bending will have constant
curvature and the beam in transverse bending will have varying curvature.

The sign convention for curvature depends on the orientation of the coordinate
axes. If the x axis is positive to the right and the y axis is positive upward, then the
curvature is positive when the beam is bent concave upward (or convex downward)
and the center of curvature is above the beam. Conversely, the curvature is negative
when the beam is bent concave downward (or convex upward) and the center of
curvature is below the beam. This sign convention is represented on the Fig. 13.

Yy A
\Ci)/ ﬁ
Negative
Positive curvature
curvature
0 X 0 T
Fig. 13

6 Examples of practical problems solution

Example 1 Checking problem of cantilever beam

M Given: [c]=160MPa, rectangle cross-
Py - |
q
Dx, - , section: width 1=10x10"2m, height
f X X
> [ — h=40x10"2m, a=2m, b=2m,
- z
Za b c c=4m, P=40kN, M =20kNm,
O (x). kN 80 gq=20kN/m.
40“ R.D.: Check the strength of cantilever
under specified loading.
M{x), kNm Solution
420 540 : .
120 1) Calculating the internal forces

Fig.14 method of sections.
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-l 0<x<4m
Q,' (X) = gX|x—0= 0] x—c=80kN;
2
—0X
My'(x)qu|X:O=O|X:C=—16OkNm
-1l 0<x<2m
Q," (x) =qc =80kN;
My (%) :—qc(%+ xj— M |y—0=—180| y_p=—340kNm;
-1l 0<x<2m
Q" (x) =qc— P =40kN;
M, "M (x) =—qc(%+b+ xj— M — PX| y_g=—340| y_= ~420kNm.

2) To check the strength, we will write condition of strength for critical layer of critical

cross-section, i.e. the cross-section with ‘M y‘max =420kNm:

M
y max
Omax = <[o].
WH.O
In our case,
6Mymax  6x420x10°

=157.5MPa.

Omax =

Ih? - 10x1072 x 402 x10~%
Since 157.5 < 160, the cantilever is strong.

3) Designing the graphs o(z) and 7(z) in critical cross-section with

‘M =420kNm and |Q,|=40kN (see Fig. 15).

y‘max
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Mymax
— N ymax e =157.5 MPa
_|_
-
P Tmax = 1.5 MPa
Fig. 15
M z Sy(z
o(2) = ylmax ; z_(Z):szly( );
y y
h h
Tmax = QZbEZ :E& = 3x40x10° =1.5MPa.
bbh3 2 A 2x1x101x4x1071
12

Since 7 << Oomax We Will ignore shear stresses in stress analysis of prismatic

beams.
4) Calculating maximum shear stresses in the beam.

In prismatic beams of constant cross-section maximum shear stress will act in the
cross-section with Qmax =80kN. Corresponding My =340kNm. These internal

forces are applied in Fig. 16.

M,
N NN
+
A T max =3 MPa
]
YOz max YO: max ?
J
«— N O max =127.5 MPa

y
Fig.16
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3Q,max _ 3x80x10°

r E—— =3 MPa.
mex 2 A 2><1><10_1><4><1O_l

In this cross-section, normal stresses are calculated by the formula

6My  6x340x10°

- —127.5MPa.
lh?  10x102 x40° x10~*

Omax =

Conclusion. In stress analysis of prismatic beams, it’s possible to ignore influence of

shear stresses on the results of calculation.

Example 2 Design problem for cantilever beam
P Given: Steel cantilever is loaded by linearly
: mffrﬂmm% o distributed loading with maximum intensity
X X
e Iy Om =10kN/m and  concentrated force
z pA
a SR, B P=10kN. Also, [c]=160MPa, a=2m,
O.(x) kN
25 183 b=1m.
an 8.3 .
R.D.: 1) number of I-beam section;
50
{x) N 2) dimensions of rectangle cross-section in
- 4.44 E:2;
= b
Fig. 17 3) diameter of round solid cross-section.
Solution

1) Designing the graphs of shear forces Q,(x) and bending moments My(x), applying

method of sections.

I-l 0<x<1m
2
Q,' (x)=ax —(—|x 0= 0]x—p=8.3kN;
| gx 2 3
M. (X)=— 0 =—4.44KkNm.
00 ==+ g0 Ol

-1 0<x<2m
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(x +b)?
2(a+b)

Q,"(x)=q(x+h)—q + P|y=0=18.3| _a= 25kN;

q(x+b)? N q(x +b)®

1 _
My (0 =="= 6(a+D)

— PX|y=0=—4.44|y_a=—50kNm.

It is clear that critical cross-section is in rigid support since ‘M y‘max =50 kNm.
2) Calculating the sectional modulus of cross-section from condition of strength:

O-maX:‘My‘maX <[o]: Wyz‘My‘maX _ 50x 103

== 312.5x10 %m?.
Wy o] 160x10

3) Determining the dimensions of I-beam section knowing that W,, > 312.5x10°%m?.
From assortment of steel products let us find near situated I-beam Ne24 with

Wy =289 ><1O‘6 m? and estimate its overstress:

_‘My‘max ~ 50x10°

Cinax = - =173 MPa.
W, 289x107°

Overstress A:%-loo%:8.1%>5%. It is more than allowable overstress

equals to 5%. This result requires to choose larger neighbor I-beam section Ne 24" with

sectional modulus Wy =317 ><1O‘6 me. It will be understressed since

_ \'V'y\max _ 50x10°

o - ~157.7MPa.
Wy 317x1070

Percentage of understress A= 1601_% x100% =1.4%,

The dimensions of I-beam section Ne24” are presented in the Table:

h b d t A2 ly Wy Sy
MM cm cm* | cm® | cm

240 | 125 |56 9.8 37.5 3800 317 | 178
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4) Designing the graphs of stress distribution o (z) and z(z) in critical cross-section

of I-beam section Ne24”.

6 ymax = 157.7 MPa

‘ i) 1 = h0.74 16.5

.
d >\1(z), MPa
\

ot B B

209

J
7
ZzZmax //

\

Fig. 18
To draw the graph of shear stress distribution it is necessary to use shear formula
(Juravsky formula):

() = 22maSy L“I"J‘XSV -

y
S.T 3 —6
Tmax:szaX y _ 25><103><178><10 ' _ 20.9 MPa.
dly 5.6x10° x3800x10"
Shear stress at the point 1 belonging to the I-beam flange is
Q, maxbt(g —;j 25x10° x 9.8x10‘3(2‘210 —9;3} x1073
Tp1= = 3 =0.74 MPa.
bl 3800x10™

Shear stress at the point I belonging to the 1-beam web is

Q, maxbt(g —;j 25x10°x125x107°x9.8-1073 x(”;()_?jxlo—3

=16.6 MPa.

y B 5.6x1073 x 3800108
Corresponding graphs are shown in Fig. 18.
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4) Determining the dimensions of rectangle section knowing that Wy, > 312.5x10°%m?.

W — bh2 S Mymax _ 50><:|.03

y > - - —3215%x107%m3.
6 [c]  160x10

Substituting E =2 we get

4

€b32321.5-10_6 and b> —7.8x10%m

i,/:ax?,21.5><10‘6

and h=2b=15.6x10"2m.

Cross-sectional area of rectangle section is

A=Dbh=7.8x102x15.6x102 =121.8x10~4m?

The graphs of o(z) and z(z) distribution in critical cross-section are shown in Fig. 19.

b
N Gy max =160 MPa
M

yrhax w \

h .\ P Tmax = 3.1 MPa
Verra\\ /
\

L~
LA

~L_

N N
Fig. 19
M 6M 3
Oy = —mex _Zymax 000158160 Mpa;
Wy bh 7.8x107“ x (15.6)“ x10~
Tmax = Rzmax _ 3x25x10° =3.1MPa.
2A 2x15.6x7.8x1074

5) Determining the dimensions of round section knowing that Wy 2 312.5-10°m?.
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3
Wy = 747 5 3125108 m°.
32

—14.7x10"2m.

P i,/32><312.5x106

T 3.14

Cross-sectional area of round section is

2
-2
@ nd?_ 3.14x(147x107?)
4 4

~169.7-10 4 m?.

The graphs of o(z) and z(z) distribution in critical cross-section are shown in Fig. 20.

\Afymax
s =160 MPa
+
Tmax = 2 MPa
Oz m
Y rni—
N
Fig. 20
M 3
2 1
O_max:‘ \X/‘max _ 32x50x10 : _ 160 MPa:

y 3.14><(14.7><10_2)

S 3
Tmax:szaX y:ﬂszax_ 4x25x10 =2 MPa.

bly, 3 A 3x169.7x107%

6) Comparing the cross-sectional areas:

T @ ) 2 -2
A<A<A—>375x10 “<121.8x10 “<169.7x10 “.

Note, that the I-beam section is the most effective in strength-to-weight ratio.
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Example 3 Problem of allowable external load for two-supported beam

Given: steel simple beam with hollow rectangle cross-section is loaded by distributed

load g and concentrated moment M in the left support. H=10cm, B=6cm, h=4cm,
b=2cm, [c]=200MPa, a=1m.

R.D.: the largest working (allowable) load [q].

M = 2qra!2
it
R, [ \R" I
X N
1= X 77077, [ = X
e Y- Yz
2a a
o
1 g =aa
2ga® | M,(x). KNm a4
Eqaz _qaz
)

Fig. 21

C

7
/?é

|
B
Fig. 22

Note, that allowable value of internal

bending moment is determined from

condition of strength:
[M]sWy[a].
On the other hand, the method of

section connects the external forces with

internal bending moments. That is why we

begin from calculating the internal forces to find critical cross-section.

Solution

1) Calculating the reactions in supports:

a) ZMAZOZ

M +RB><2a—q><3ax3?a:O,

Rg ><2a:%qa2 —2qa2 :gqa2 — Rp :%qa;

b) > Mg =M +2qaxa—qax%—RAx2a:O,

9/8/2020 3:04:40 PMW:\+MEXAHNKA MATEPVANOB W\++HMK[ AHII\082 LECTURES 2020\14 Strength of a Bar in Transverse Bending.doc



18 V. DEMENKO  MECHANICS OF MATERIALS 2020

Rax2a= 2qa2 +2qa2 —%qa2 — Rp :gqa.

c) Checking: >'F, =Rp +Rg —qx3a:%qa+%qa—3qa:0.

The reactions are correct.

2) Designing the graphs of shear forces Q,(x) and bending moments M (x), applying

the method of sections.

I-l 0<x<a

Qzl (X) = qx‘ x=0~ 0‘ x=a=da,

2
| X 1 2
My (X):_T|X:O:O|x=a:_§qa :
-1l 0<x<a

5 1 1 7
QZ||(x) =q(a+x)—Rg=g(a+ x)—anqu—an|X=O :—an|X:2a :an_

Finding of extremum bending moment value due to intersecting the shear force graph

with x-axis in the second portion.

Q;(Xg) =% —%qa =0—>Xxg= %a — coordinate of the intrsection.

2 2
TR 2 P CEE GO S

1 - 2 15 -
:_Eqa |x:2a:_2qa |x:0.25a:_§qa :

In result, ‘M ymax‘ = 2qa2 (see Fig. 21).
3) Calculating the sectional modulus of the cross-section (see Fig. 22):

BH® bh® 6x10° 2x4°
W :|1_|2: 12 12 _ 12 12 :600_2X64:98cm3.

Y Zmax H 5 60
2
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4) Calculating the allowable loading [q]:

M
o= Jvmaxﬁ[a], Mymax <[oWy
y
o 6 -6
2[q]a2=[0']\Ny—>[q]:[ ]V\zlyZZOOxlO x98x107° _ 9800 _ oo\

2a 2a° a®
Example 4 Checking problem for cantilever in plane bending
Given: cast iron cantilever beam of T-section is loaded by the forces: distributed load
g=10kNm, concentrated moment M =20kNm and concentrated force P =10kN.
Cross-sectional dimansions: a=6cm, b=1cm, c=10cm, d=12cm. Allowable
stresses: [o]; =200 MPa, [o]. =400 MPa, length of the portion | =1m.

R.D.: check the cantilever strength and select optimal orientation of the cross-section
relative to plane of loading.

M
it D qI P
ry
X X
- - X d
11 1= - >
A / = Y / A
- = > A / A
0.(x) kN 3 '
20 Y
A o] V
f‘
& 10 7/
\Icn / )
Y | |
M (x) kNm
15 ’ ( ) 15 B
\'\]\]\ 5
Fig. 23 Fig.24
Solution

1) Calculating the internal forces and moments in the cantilever cross-sections

I-1 0<x<1m

Q' (X) =P+ x| o0 =10| 4y = 20kN;
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| qx2
My (x):—Px—7|X:0:O|X_| =-15kNm.
-1 0<x<Im

Q,"(x)=P+ql =20kN;

q(x+|)2

My (x)==P(x+1)- +M|y—g =5|yot =—-15kNm.

2) Calculating the neutral axis position. For this, let us select y-axis as original (see
Fig. 25).

7 a) Determine first moment of cross-sectional
area relative to y-axis:
“ 7//A W : s, =a(d-c)®°-
0 7 | 2
h // V. :6><(12—10)><12_1O =12cm?;
N /g I c
Y g N . Sy =bc(d—§J=

Fig. 25 =1x10x(12—%):700m3.

b) determine the neutral axis position using the formula

Vertical coordinate

sy' +5,! 12470
ZC = =
Al + Al 6><(12—10)+1><10

=3.73cmand zp =3.73cm, zg =8.27cm.

3) Calculating the central moment of inertia.

3 2
|_(d—c)a d-c) _
ly, _T+(d —c)a(zA—Tj =

(12-10)x6°
Y

12-10

2
+(12-10)x 6><(3.73— j =125.44cm?;
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3 2
i _b(d-c) ¢
S T G Y I
:1><(1i2 10) +1x(12—1o)x(12+%—3.73J —278.68cm".

ly, =1y - ly W _125.44 4+ 278.68=404.12cm*.
C Cc C

4) Calculating the maximum normal stresses in A and B points (see Fig. 26):

4 o4 g = Mymax?A _
A A |
S /////l w Ye
%% 15x10° x3.73x 1072
Q 7% = X ~130.1 MPa,
s 7 404,12 x10
Y

O'B= |

Fig. 26 Ye

15x10° x (12 -3.73)x 1072
404.12x1078

=308.5MPa.

5) Checking the strength of the beam in two possible cases of its orientation to
determine its optimal orientation relative to the plane of loading.

Let us compare stresses in A and B points for two possible cases of cross-section
orientation.

For orientation | (see Fig. 27)

op= a}ﬁgfg =139.1MPa. Since [c]; =200 MPa the most tensile point A is strong.

Simultaneously,

og = ol =308.5MPa. Since [o]; =400 MPa the most compressed point B is

also strong. Therefore, this orientation of cross-section corresponds to the condition of

strength (see Fig. 27).
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My
\ max
4 G NS ~139.1 MPa
}
Zy +
Y \ Jic
A
ZB \
X -
Y
B comp
~ Omax  =308.5MPa

Fig. 27
For orientation |1

op =0 =139.1MPa. Since [o], =400 MPa the most compressed point A is

strong.
Simultaneously,

og = a,tﬁgi =308.5MPa. Since [c]. =200 MPa the most tensile point B becomes

unstrong (Fig. 28).

\Mymax
G Xns ~308.5 MPa
B +
e
A —
N
~ x G o =139.1 MPa
Fig. 28

In result, this orientation of cross-section does not satisfy the condition of strength.
Conclusion. To be situated rationally, larger acting stresses must correspond to

larger allowable stresses.
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Example 4 Design problem for round simple beam
R Given: M =4kNm, g=3kN/m,
A 1
‘ U [6]=160MPa.
f/z Yy R.D.: Diameter of round cross-section.
x ! Solution
"Z
1) Calculating the support reactions:
B 2m e Im | Im
(@) 2 Mg =0:
35 tQ- () KN
- A —Rax4+09x2x3-M =0;
- S R 32X34 oo
M (x) kNm 1.5
/) ‘ /fﬂ (b) > Mp=0:
\QUUlgéJHLD}V - Rgx4—M —Qqx2x1=0;
Rg = 4+3x2x1_ 5N

2.5

Fig. 29

The reactions are correct.

(c) Checking: > F, =0:
3.5+25-3x2=0.

2) Designing the graphs of shear forces Q,(x) and bending moments My(x), applying

the method of sections.
I- 0<x<2m

Q' (x)=Ra —ax=3.5-3x|,_g =3.5|y_p =—2.5kN.

In cross-section with Q, =0, M, graph grows to maximum value.

Using equation QZ'(xo):O let us find xg:

3.5-3Xg=0—>xp=1.17m.

2

M, (x)= RAx—qX7 =3.5X ~1.5X?|y_g = 0| y_1 17 = 2.05| x_p =1kNm.

=11 0<x<1m

Q,"' =Rp—(qx2=35-3x2=-25kN.
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My (x)=Rax(x+2)—qx2x(x+1)=
=3.5x(X+2)—6x(X+1)|x=0 =1 y=4 =—1.5kNm.
-1 0<x<1m
Q,"(x)=—-Rg =—2.5kN.
M (x) = Rgx = 2.5%|y_0 = 0| y—g = 2.5kNm.
Conclusion. ‘M ymax‘ =2.5kNm.

3) Determining the diameter of round beam from the condition of strength in critical

cross-section with ‘M ymax‘ =2.5kNm.

M M 3
Omax = —2 <[ o] > W, > —IT2 = 2'5X106 =15.6x10"°m’ = 15.6 cm”.
Wy, lc]  160x10
3 32W —6
m®=:zg——>d=3 y::#32X156X1O =54x107%m.
32 Vs T
Example 5 Checking problem for I-beam
R Given:  Cross-section  I-beam  No50,
M
m? | P~ [0]=160MPa, P=100kN, M =40kNm,
0 ‘ R g=20KkN/m.
X Yl T
H | Vi R.D.: Check the strength of the beam.
3m 3m .
- - Solution
1) Calculating the support reactions:
llllllllll 14 (a) ZM B~ 0:
40 —RaAx1+gx6x9+Px3-M =0;
86
M, () kN .
40 20 RA:20><6><9+1OO><3 40:134kN.
™ 10
- e (b) > M =0:
Fig. 30

RgxlI-Px7-M —qx6x1=0;
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- 100x7+40+20x6x1

R
B 10

=86 kN.

(c) Checking: > F, =0:
134+86—-20x6—-100=0.

The reactions are correct.

2) Calculating the shear forces Q,(x) and bending moments M, (x) applying the

method of sections.

-l 0<x<2m
Q,' (X) = —qx = —20x|_g = 0|_p = —40kN;

ey OX° 2
My (x) :—7:—1Ox | x=0 = 0| =2 = 40kNm;

-1l 0<x<4m
Q" () =—q(x+2)+ Rp =—20(x+2) +134|y_o=94| y_g =14kN;

2
X+2
My (x) :—%+ RaX=—10(x + 2)* +134x|y_o = 40| ,_4 =176 KNm;

-1l 0<x<3m
Q,"(x) =—qx6+Rp =—20x6+134=14kN;
M (x) =6 (x+3) + Ra(x +4) =
= —120(x +3) + 134(x + 4)| g = 176| y_3 = 218kNm;
IV-IV 0<x<3m
Q,'V(x) =—Rg =—-86kN;
My (X) =—M + Rgx =40 +86X| g = —40| y_g = ~218kNm.

The graphs are shown in Fig. 30.
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3) Checking the strength of 1-beam Ne50. From assortment (GOST 8239-72) find

its sectional modulus Wy, =1589 cm®. In our case, ‘M ymax‘ =218 kKNm.
Condition of strength is

> _J“Aynwx‘_ 218x1073
Wy 1589x107°

=137.2 MPa <[] =160 MPa.

Conclusion. The beam is strong.
Example 6 Checking problem for cast iron beam
Given: cast iron of T-section is loaded

LR, (L IV M 0 R
- 5 py q=3kN/m, P=3kN, M =6kNm.

[
~

o A NS o o ~ Cross-sectional dimensions are shown in

X, {1 Yy | wl ] mlx] Figs.32 and 33 for two possible

zy
2m | 2m 2m 2m orientations of the section. Allowable

0.(x) kN stresses for cast iron are [o]; =40MPa,

2 []. =80 MPa.

©) N S ERERERT AR EEEEE R.D.: find optimal orientation of the

beam relative to the plane of loading
6 from two possible versions shown in
M ,(x) kNm Figs. 32 and 33 check its strength.

Solution

4
2
m m 1) Calculating the support reactions.

(a) 2 Mg =0:
—RpAx6+0x2x7+Px4—-M =0;

2

Fig. 31
~ 3x2x7+3x4-6

6

Ra =8KkN:

(b) 2 Mp=0:

_ 6+3x2-3x2x1

Rgx6-Px2+0qx2x1-M =0; Rp =1kN.
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(c) Checking: > F, =0:

—3x2+8-3+1=0. Reactions are correct.

2) Calculating the shear forces and bending moments in cross-sections of the beam.
I-l 0<x<2m

Q' (X)=—ax = —3x|3_g = 0| y_3 = —6KN;

oy BX° 2
My (%) =—7=—1.5x | x=0 = 0| x=2 =—6KNm;

-1 0<x<2m
Q,"(X)=—2q+Rp =—2x3+8=2kN;

M (x) = -2q(x+1) + Rax = —6(x +1) +8X| y_0 = —6| y—p = —2kNm;

-1l 0<x<2m
Q,"(x) =—Rg =—1kN;

M y'”(x) =RpX =X|y—0 =0|y=p =2kNm;

IV-IV 0<x<2m
QZIV(X) =—Rpg =—1kN;

M"Y (X) = Rg (X +2) =M =X +2-6|y_g = 4|32 = 2kNm.

M
N Ymax s \MJ"max
A O max o
Zy ] B ¥
\ Ye
Ve
Zp \
X =5
A _
B
~ ot 4 = comp
Fig. 32 Fig. 33
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3) Selection of cross-section optimal orientation in plane bending comparing two
orientations shown in Figs. 32 and 33.

Note, that the T-section is non-symmetrical relative to neutral axis. Largest stresses
appear in the most remote points of the section (points A and B). Since for cast iron

[c]; <[o]c, the largest compressed stresses must appear in the layers situated at the
larger distance from neutral axis i.e. at zg distance. That is why the orientation shown

in Fig. 32 is optimal in this case of loading.
4) Checking the strength of the cross-section shown in Fig. 32 (of optimal orientation).

Let us write conditions the strength for A and B points:

comp_‘MymaX‘zB

OB =Omax = | <[o]c;
Ye
M ‘z
tens ‘ ymax| <A
O'Azamax:—l <[c}.
Ye

For this, let us calculate central moments of inertia ly, calculating preliminary vertical

coordinate of the cross-sectional centroid. We will use yy-axis as the origin (see
Fig. 34).

Coordinate of centroid is

12 cm
A . Syo _ A|_21+A222 _
C I -0 TOA AHA
3 em 1>01 e _12><3><1.5+3><6><6_3cm
cr Ve 12x3+3x6 '
I “2 Central moment of inertia is:
Y .
6 cm Cz y2 B | 1 I ) ~
ch—lyl +& ,61+Iy2 +ay Ay =
3 3
12x3 +(—1.5)2><36+3X6 +32><18:
B 12
3cm =324cm”.

Fig.34 Then
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3 -2
1 1
O'A=C7;§2§=6X 0°x3x10

=35.5 MPa < [c}; =40 MPa;

324x1078
comp  6x10°x6x1072
OB = Omax’ = =71 MPa <[c], =80 MPa.
324x1078

Conclusion. Since both condition of strength are satisfied the beam is strong.
Example 7 Problem of allowable external load

Given: steel I-beam No24 cantilever is loaded by

/ I F the force P. The length | =3m, [c] =160 MPa.
7 x . R.D.: calculate allowable value if the P-force from
v condition of strength.
- 3m .| Solution
0.(x) kN 1) Calculating the internal forces in the cantilever
: H_} applying the method of sections.
o M},(x) KNm I-1 0<x<2m
T mm— a9+
Fig. 35 My' (X)=—Px|y—0 =0|y_3=—3P.

Corresponding graphs are shown in Fig. 35.

2) Calculating the allowable force value [P].

Critical section is situated in rigid support and ‘M ymax‘ =3P.

From condition of strength:

[My]
Omax = —2-=[0] > [My]=[c]W,.
Wy
From assortment, (GOST 8239-72) for I-beam Ne24 we find its sectional modulus
W, =289cm’.
After this, allowable internal bending moment becomes

[My] =160x10° x 2891070 = 46.24kNm and allowable force is
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Myl 46.24x10°
L

=15.4KkN.

P!

Example 8 Problem of optimal supports placement in plane bending

Given: simple beam with overhang is

R, I y R 1l
‘ ur loaded by uniformly distributed load g.
A X BX
7 It w7 1| x Position of the right support is
z iz
= al i determined by the k-factor.
R.D.: Calculate the k-factor value which
Ox). kN gl(l-%)
q_l(k_lj provides the largest allowable value [q].
k 2 + _
7 1 Solution
IE] i-1]-of
i[k 1 k 2 1) Calculating the support reactions.
k 2
< gl (kY (a) > Mp=0:
M (x), KNm 2
— ﬁ—R xkl=0; R —q—l
2 B LB Tk
+
(b) 2. Mg =0:
qlz - 1 : I
242 2 ql(kl—aj—RAku:O;
Fig. 36

gl 1
Ry=—|k—=1.
A k( zj

. ql ql 1] gl — 2kgl +ql
c) Checking: Y F, =gl ——-—| k—-=|=ql - =0.
(© Checking: 3.7, =ai - 3 k[ Heq g2

The reactions are correct.

2) Calculating the shear forces Q,(x) and bending momentsM, (x) applying the

method of sections.

I-1 0<x<kl
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| ql 1 ql 1 ql 1
=Rp-x=—-| kK== |=0X|y—g =—| k== ||xet1 =—| k== |—akI .

In this portion, M graph has maximum value which is calculated equating shear force

to 0:
I ~ql 1 |( l)
—0; k-2 ]oqrg=0-xg=—|k—2=].
2 2 2 2 2
oy X B _ql“(1-k) _ql 1
My (X)_RAX_T|X:O_O|X:k| _#‘X:XO M k_E :

-1 0<x<(1-k)I

Qz“ (X) = qX| x=0 = O‘ x=l(1-k) = ql@-k);

2 2 2
.y _ OX _ _ql"@-k)
My (X)—T|x:0—o‘x:l(l—k) ==
3) Calculating the k-factor.
It is evident that [g] will be the largest in value if maximum bending moments in both

portions will be equal to teach other:

| _ | .
‘My‘max_‘My max’

2 2 2 2 2
l(k_EJ :M_{k_ij —k2(1-k)% >
k2 2 2 2

c—ioka-n); |k2=1
i ~ 2
k—==k(k-1); |kZ-2k+==0;
2 2
1 1
Kio=t—: kqyp=1+—.
1,2 x/E 3,4 \/E

Therefore, k = 1 ork=1- 1 , since another values of k contradict the problem data.

7z Np
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Example 9 Design problem for cantilever

M Given: steel cantilever is loaded by the
, 1 following loadings: q =20 kN/m,
‘) x x}_ x x}_ x| P=12kN, M =25kNm. The cantilever
_Ce | % | lengthst a=12m, b=1m, c=12m.
[0]=200MPa.

o| 0z(x).kN _ _ .
@ R.D.: 1) diameter of solid round section;
é 2) dimensions of rectangle cross-section;

18 (M y(¥), kNip . 12 3) the number of I-beam section.
g}\ - Solution

1) Calculating the shear forces Q,(x) and
\LHHH-]IHMW bending momentsMy (x), applying the

method of sections.

Fig. 37 I-1 0<x<12m
Q,' (X)=—P =—12kN;
M ' (x) = Px=12X| y_0 = 0|1 » =14.4kNm;
-1l 0<x<1m
Q," (x) =—P + qx =12+ 20x|,_g = 12| ;4 = 8kNm;

Q," (Xg) =—12+20xy =0 — Xq :;—é:O.Gm;

2
X
M, " (x) = P(x+ ) —q7 =12(x +1.2) ~10x%| o =14.4|y o 6 =18| 51 =16.4kNm;

=11 0<x<12m.

Q" (x)=—P+qb=8kN;
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Mylll (x) = P(X+a+b)‘qb(”gj"\” :12><(x+2.2)—20><(x+0.5)—25|x=0 =

=14,4],_1 » =18.2kNm.

Conclusion. Critical cross-section is determined taking into account maximum value of
the bending moment:

‘M y‘max =18.2kNm. Corresponding shear force Q, =8KkN.

2) Calculating the sectional modulus of the cross-section using condition of strength.

s My| _18.2x10°

-6 ..3
Omax =———=<[o];, W, > =91x10 " m°.
W Y7 [o]  200x10°

3) Knowing Wy291-10_6m3 let us find corresponding I-beam number from

assortment. Closest less I-beam section is Nel4 with Wy —81.7x10%m2. 1t will be
evidently overstressed:

_ My| _ 18.2x10°

o - —222.8MPa.
Wy 817x107°

~222.8-200

Overstress is A x100% =11.4% >5%. Since overstress IS non-

permissible we will find in assortment larger I-beam section Nel6 with

Wy, =109 x10~%m3. Its understress is

_ My| ~18.2x10°

o - ~167 MPa.
Wy 109x107

200-167

Understress A= x100% =16.5%. The dimensions of selected I-beam are

shown in the Table:

h b d t A Iy Wy Sy

2

mm

cm

cm?

cm’®

cm

160 |

81

| 5.0

(7.8

20.2

873

109

62.3
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Drawing the graphs of acting stress distribution oy (z) and z,(z) in critical
cross-section.

Calculating the shear stresses in specific points of the section: pp. 1, 2, 2%, 3.
Note, that 2" point belongs to the flange and 2" point belongs to the web.

General Juravsky formula is

S *
7(2)=
y
It is evident that 73 =0 since S;*=0.
- b >
LMvmax
1 Y .\'(Z)max =167 MPa
A 7 h
SN " los &
d N

1
TH 711.4
114 é —

R — /

Fig. 38
For 27 -point the formula becomes:
szt(g—;j 8x103x 7.8x10 3 (120 ’ 8) 1073

2
~ ~ =0.54 MPa.
p2! bl 873x1078

For 2" -point the formula is the following:

szt(g—;j 8><103><81><10_3><7.8><10_3(120 728j x1073

= = 3 =8.8MPa.
dIy 5x10°x873x10

fooW =

Maximum shear stresses act at the points of neutral axis:

T _
S 3 6
Tp.1 = Tmax = Rey _ 8107 x62.3x10 =11.4MPa.

dly  5x1073x873x1078
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Estimating the stress state of cross-section specific points and their strength.
Note, that I-beam section is an example of thin-walled section, that is why we will

estimate the stress state of specific points taking into account not only acting normal

stresses but also shear ones.

Point 3.
Omax =167 MPa, 7=0.
|
N : Deformation — tension.
: Stress-state — uniaxial.
~_ ""\I% Condition of strength is
\ymax
omax <[], 167 MPa < 200 MPa.
Fig. 39 Conclusion: point is strong.
Point 1
Tmax =11.4MPa, o=0.
E Deformation — pure shear,
: Stress state — biaxial. To prove this concept, let us calculate
T [ . ]
| max 1\ principal stresses:
-~ Ogtop 1 2 4. 2. :
01(3) =2 > b ii\/(% —0pg)" +47°; 01 =Tmax;
Fig. 40

02 =—Tmax-
Condition of strength is written applying third strength theory:

O-qu” =|01—O'3|£[O'], O-eq“I :|z‘max+‘[max|£[0'], 22.8 MPa < 200 MPa.

Conclusion: point is strong.

Point 2%
! AN
; N
ITG’.
RN [ —— \\ §

e N NS

Fig. 41
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e iz 3 .

oW
p I ly

Cq=0

80-7.8

=167 x =139.2 MPa.
Ta =T, pw =8.8MPa.

Let us calculate the principal stresses if o, =139.2MPa, og =0, 7, =8.8 MPa:

6
_Og4t0p 1\/ 2 2 139.2x10° 1 6
0'1(3)——2 iE (O'a—O'ﬂ) +4z,, ——2 i5x140.3><10 =

=69.6MPa + 70.15MPa.
In this, o4 =139.75MPa, o» =0, o3 =—0.55MPa.

Principal planes are situated at the o angle:

2ty __2x838 =-0.126, «ap=-3°36" (clockwise rotation).

ocp-0, 0-139.2

thao =

Conclusion. Stress state at this point is two-dimensional (plane).

4) Calculating the dimensions of rectangle cross-section using condition of strength.

2
Wy = b0 S 91x1078me.
6

3x91x107°

In EZZ we have that %b?’ >91x107% and b>~§>/ ~5.15x10"2m.

h=2b=10.3x10"?m.

A=hb=5.15x10"2x10.3x10"2 =53.05x10 4 m?.

Let us draw the graphs of stress distribution in critical cross-section.
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37

/
1 Tyma\Y O e = 200 MPa

A 7
7
7

N Nx
- b =
Fig. 42
M 3
Umax:‘ \;'V‘max _ 6x18.2x10 ' _ 200MPa:

y 5.15><10_2><(10.3><10_2)

1/2
QzSy

o Q 3. 8x10°
X bl A

=2 7 =2.26MPa.
2 53.05x10~

_3
, 2

5) Calculating the diameter of round section using condition of strength.

3
747 5 91x1078 m?.

W., =
Y 32

d>3 —9.75x10"2m.

3.14

32Wy §/32><91><106
T

7d®  3.14x9.75°
4 4

A= 107 =74.6x10 4 m?.

Draw the graphs of stress distributions in critical cross-sections.
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M
ymax
\ ') =200 MPa

Xmax

Timax =1.43 MPa

Fig. 43

Myl 32x182x10°

+ = 200MPa;
y 3.14><(9.75><10_2)

Q,8y"?  4Q, _4_8x10°

Tmax = = =1.43 MPa.
™bly 3 A3 746x107

6) Comparing the cross-section areas:

s 4 —4 4 2
A<A<A: 20.2x1074<53.05x107% <74.6x10 "4 m?.

Note, that the I-beam section has the largest strength- to-weight ratio.
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National aerospace university
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Department of aircraft strength
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Document: home problem
Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 1 Complexity: 1

Given: [O'], =160 MPa; [O'](, =200MPa; h/b=2 for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending
moments ;

2) using condition of strength in pure bending calculate: a) diameter of round
solid cross-section; b) diameters of hollow tube cross-section using thickness
ratio a=d/D=0,8; c¢) dimensions of rectangle solid cross-section in
h/b=2; d) dimensions of hollow rectangle cross-section inH/h=2;
B/b=2;e¢)number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear
force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a)
lying on neutral axis; b) belonging to the most tensile or compressed layers of
the section (choose yourself); ¢) in the point of the flange and web connection

Given: g=10kN/m, M =20kNm,
P=30kN, a=2m, b=4m,
c=2m, [c]; =160 MI1a,
[c]. =200 MPa, h/b=2.

Note 1. Stress analysis is possible
only after calculation of internal
forces in cross-sections of the beam.
Note 2. In shear force calculating, we
will use the rule that internal shear
force in particular cross-section
numerically equals to algebraic sum
of external forces projections on z
axis, but only for the forces applied
to the left or to the right part of the
beam.

In bending moment calculating, we
will use the rule that internal bending
moment in particular cross-section
numerically equals to algebraic sum

(one of two existing connections). Note, that the point must belong to the web.

of external force moments, but only
for the forces and moments applied to
the left or to the right part of the
beam.

Full name of the lecturer

Mark:
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Solution

1. Sign conventions:

a) for shear forces (Fig. 1) b) for bending moments (Fig. 2)

m m m m
PA P M M
M M
Y Y +++++
y ++ T+
— —t—

Y z Yp z z
m m m m
;n—m<0 ;n—m>0 M;n—m>0 M;n_m<0
Fig. 1 Fig. 2

2. Calculating the reactions in supports R5 and Rg (see Fig. 3). Let us direct preliminary
these reactions upwards, since their actual direction are unknown. Plus sign in solution
will mean that really these reactions are directed upwards. Secondly, to determine R and
Rc , we will use both equations of momentum balance (for example, relative to C and A
points). Third equation of the force equilibrium will be used to check the result accuracy.
In writing the equations of the moment balance, clockwise rotation will be assumed to be
positive.
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R4 1 wm I R} I P
~—
q q \
A L (A A A
AV Y YIVY Y B C D Y
X — X X
I 0| 1l z
V4 z Z
a b c
) 30
/////
N T@m U
< o O, (x), kN
667
: 40,
X I //// ™
o—»é ////// \\\\
1333 - -
M, (x), kNm
H J6.66
8.89 Fig. 3
ga” a
ZMAZOZ’LT_M —RC(a+b)—qa(E+b+c)+ P(a+b+c),
Re =—— —E+M +qa(g+b+c)—P(a+b+c) =+16,67 kKN
a+b 2 2 ’ '

2
ZMC:O:—%—M +RA(a+b)—qa(%+b)+Pc,

1 qc2
Ra= +—+M +qa(—+b) Pc |=+13,33kN .
a+b 2

> P,=0=—Rp—Rc—qc+0ga+P=-1333-16,67-10x2+10x2+30=0.
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3. Determining the shear forces and bending moments in an arbitrary cross-sections of the
beam. Two potions will be considered from the left and the last one from the right to get
the simplest shape of equations.

-1 O<x<a:

Q) (X) =Rp — X |y_0=13,33|4_,=13,33—20=—6,67 kN,
2
X
M (x) = RAX—%|X:O:O|X:2: 26,66 — 20 = 6,66 kNm.

Note, that the change of shear force sign within this potion boundaries really means the
presence of extreme value of internal bending moment within the boundaries of the potion.
First of all, let us determine the coordinate of the cross-section with extreme bending
moment. For this purpose, let us equate to zero the shear force equation:

QZI (Xe) =0=Rp —0X =13.33-10%,, X =1.33m (see Fig. 3).
Substituting this coordinate into bending moment equation leads to the following value:

e 10

M! =My (x)=RaX - > :13.33><1.33—?><1.332:+8,89 KNm.

Ymax

-1 O<x<b:
1 (x)=Rp —qa=13.33—-20 = —6.67 kN,

M (x) = Ra(a+x) —qa(%+ xj— M |y_o= 26.66 — 20— 20 =
~13.34],_4=79.98—100 — 20 =40 kNm.

-1l O<x<c:

() = P— qx|y_g=301]4_p=30—20=10 kN,
Il qX2
My (%) ==PX-+ =~ Ix_0=0ly_p=—60+20=-40 kNm.

4. Designing the shear force and bending moment graphs. For shear force graph positive
values will be drawn upwards and vice versa. The bending moment graph will be drawn
on tensile fibers (see Fig. 2).

In design problem solution, we will omit the shear forces due to their negligible
influence on prismatic beam strength. In such case, we will determine critical section as
the section with maximum magnitude of bending moment. In our problem, this cross-
section is situated on the right support:

‘Mymax ‘ — 40 kNm.
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5. Calculating the sectional modulus W), ; from condition of strength in critical cross-
section:
—‘Mymw‘g[a].
Wn'a' - - - -
Note. In the case when allowable stresses are different in tension and compression,
lesser value of allowable stress should be used in condition of strength, i.e.
[c]; =160 MPa. Then

Mymax‘ ~ 40-10°
[c}  160-10°

6. Selecting the 1-beam section number from the assortment.

(a) let us chose, at first, lesser number No.22 with W, ; =232 x107° m?:

3
N0.22 = oy =— 2107 __ 175 4 MPa.

-6
232x10
This number will be evidently overstressed but five percent overstress is available in
mechanics of materials. It's calculating shows, that

%W—_[(y]xloo%:wxmo%:7_5%_

[G] 160
Since overstress is more than 5%, No0.22 is not applicable. Therefore, larger number
should be selected: No.222% with W,, 5 = 254x107° m3. Maximum normal stress in this |-

3
beam section is oy = 40107 =157.48 MPa.

- 254x107° o
For further calculation, copy from the assortment the following dimensions and

geometrical properties of No.222 section:
h=22x102m, b=12x102m, t=0.89x102 m, d=054x10"2 m,
ly —2790x10°8 m*, W, = 254x107% m3, sy —143x10 % m3, Al =32.8x107% m?.

Note that y-axis is horizontal central axis for the section, which is really neutral axis in
vertical bending. This section is shown on Fig. 4.

(b) design the graph of stress distribution in critical section under ‘Mymax‘:40 KNm and
Q,|=10kN loading:

Omax =

—250x10% m3.

Wha = ‘

A=

My o IN o.(z), MPa 7..(z), MPa
~_ 7.
7o) 4
N 0.34 7.48
AN
d + \
\
z \
T \
. L5 Y } 11.81
Qz\x //
X //
~J 157.48
b -
Fig. 4
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To determine shear stresses and draw correspondent graph of their distribution, we will
use the Juravsky formula. Knowing the stresses in three points: T; (outer point of the

flange), T, (flange-web connection), T3 (point of neutral axis), it becomes possible to
draw parabolic graph of stress distribution.

Z']_:O.
_2 2
o[t 10x103x12x1072 x0.89x102| 22*10 " 0.89x10
Qbt| 2~ . :
T B - =
2( flange) bl 12x1072 x 2790%x1078
=0.34 MPa.

Note, that the flange width b was introduced into the Juravsky formula as the width of
corresponding layer of the section.

>3 2 2
2'2 b) = = =
(1web) diy 0.54x1072 x 2790x10°8

=7.48 MPa.
Note, that the web width d was introduced into the Juravsky formula as the width of
corresponding layer of the section since this point belongs to the web.

Sy 10x10°x178x10°°
UM Tdl,  054x1072x 27901070

-2 )
szt(h_tj 1O><103><12><102.0_89X102{22><10 ~ 0.89x10 ]

=11.81 MPa.

Note, that the S; value is the first moment of half-section relative to neutral axis of the
section. It was preliminary found from assortment.

(c) analysis of the stress state type in Ty, Tpwen), T3 points of critical section
(see Fig. 5, 6, 7):

Point Ty.
R !
T ion|-oma =157.48 MPa Tmax =01
S |
- \\f . Remaining principal
Fig. 5 stresses are: oy =0,
Conclusion 1: deformation is tension. o3=0
Conclusion 2: stress state is uniaxial.
Point TZ(Web) . o3
1 _Z TTz(Web)
) é\; T7, (web) —~—
~§ | . \*\U\ O-Tz(Web) >
'--'-\—\L\ OT,(web) |Z\/7% X
N \ — |
X
Fig. 6 /
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GTZ (web) = 2 = =144.95 MPa,

ly 2790x1078
TT2 (web) = 7.48 MPa.

-2
M (h_tj 4O><103£22X10 —0.89><10_2}
Ymax 2

To determine the stress-state type, let us determine principal stresses and the angle of
principal planes inclination. The following formulae will be used for this purpose:

O, +0O 1 2 2
Gmgx :aTﬂiE\/(aa_Gﬁ) +4T0{ )
min
tg2ap:i.
O'ﬂ—O'a

Since the condition o, > opg was assumed in these formulae proof, let us re-designate the

stresses:
Og = O'T2 (web) = +144.95 MPa ,

op =0,

T =TT, (web) = +7.48 MPa,

Tp=—Ty=—1.48MPa.
Then

Oq+top 1\/ 2 2 14495+0 1\/ 2 2
Omax =————*=\||lo, —0op3) +4r, =————+=4/(144.95-0)" +4x7.48° .
max 2 2 (0 —op) +4r 2 2V )
Omax =+145.34 MPa =07,
Omin =—0.39 MPa = o3,
Checking the invariability of normal stresses sum in rotation of axes:
Oq+op=01+03 > +144.95+0=+145.34-0.39.
Calculation of the principal planes inclination:
2ty _ 2(+7.48) _ 01032,
op—0o, 0-144.95
2ap =-5.9° = ag=-2.95° (clockwise rotation).

t92a =

Conclusion: stress state is plane (biaxial) (see Fig. 6).

Point T3.

|
I
Bl — O
L Y X
\ ~ \ a

Fig. 7
In this case, o1, =0 MPa, 77, = 75 =11.81 MPa.

Conclusion: deformation type is pure shear, stress state is plane (biaxial) (see Fig. 7).
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Calculation of principal stresses and the angle of principal planes inclination.
Oq+t0p 1\/ 2 2
Omax =————t— +opz) +4t,,,
m?:]( 2 2 ( @ ﬂ) o
Since the condition o, > op was assumed in these formulae proof, let us re-designate the
stresses:
g =0p3=0, 75 =+r7, =+11.81MPa, 75 = -7, =-11.81 MPa.
After substituting,
Omax =174 =+11.81MPa =0y,
09 = 0.
Calculation of the principal planes inclination:
2r,  2(+11.81)
Op—0gq 0-0
Principal stresses are shown on Fig. 7.
Conclusion: stress state is biaxial, deformation is pure shear.

7. Calculating the round cross-section diameter.
(a) it was found earlier from the condition of strength that Wy = 250x107° m3. On the
other hand,

3 -6
w® D% g3y _§/32x250x10

y 32 N 3.14

(b) cross-sectional area is

2 —25\2
A9 _ 7r4D _3.14(1366x107°)7 | 4o 1042

Note, that this area is significantly more than the area of corresponding I-beam

section: A=32.8x10"* m?.
(c) draw the graphs of stress distribution in critical section:

t92ap = —0, 20 =-90°, ap =—45° (clockwise rotation)

~13.66x1072 m.

Ymax
\i o,(z), MPa

160 7,,(z), MPa

+
y =,
QZ‘ %l 0.91

\ o

X

z

Fig. 8

32M 3
Oy = Ymax _ 32x40x10 _160 MPa,

7D%  3.14x(13.66x107%)3

46




4Q,  4x10x10°
Tmax =3 x — —4
3 A 3x146.48x10

8. Calculating the dimensions for rectangle cross-section.

Let us assume, that h/b=2.

(a) from condition of strength the sectional modulus should be equal to
2

Wy = 250x107° m3. From the other hand, Wy = % After substituting h=2b, we get

=0.91 MPa.

3
% ~250x10°% m3,

AN —6
bz?/ 2y _3/3”50;10 =7.22x1072 m,

h=14.44x107% m,
(b) calculation of cross-section area:

A=bh=104.26x10"* m?.
Note, that this area is less than the area of round section but more than the area of I-
beam section.

(c) draw the graphs of stress distribution in critical section:
M

Ymax
™~ o,(z), MPa 160 7,,(z), MPa
2 Tmax = 1-44
QZ" \ %l
X
~
Fig. 9
z
6M 3
Omax = Ymax _ 6> 4010 5 =160 MPa,

2
bh™ 7.22x1072 (14441072

3
,max:gQ_Az: DAOA0" ;1 44 mpa.

2x104.26x1074
9. General conclusions:
a) D® <h® <h! (13.66x10™° m<14.44x107° m<22x1072 m);

D) oy =0y = oy (160 MPa =160 MPa =157.48 MPa)
C) T8y < Ty < 7oy (0.91MPa <1.44 MPa <11.81MPa);
d) A®> A" > Al (146.48x107* m? >104.26x10™* m? > 32.8x10™* m?).
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