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LECTURE 16   Deflections of Beams (Continued) 

1   Calculation of Deflections by Integration of the Bending-Moment Equation 

The first equation we will use is the bending-moment equation: 
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To simplify the writing of this equation, primes will be used to denote differentiation: 
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dx
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2
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Using this notation, we can express the differential equations for a prismatic beam in 

the following form: 

''EI M  .     (3) 

Since the Eq. (3) is of second order, two integrations are required. The first integration 

produces the slope ' d dx  , and the second produces the deflection  . 

To begin the analysis we will write the equation (or equations) for the bending 

moments in the beam. In some cases a single bending-moment expression holds for the 

entire length of the beam. In other cases we must write separate bending-moment 

expressions for each portion of the beam between points where changes of the moment 

occur. 

The general procedure for solving the differential equations is as follows. For 

each region of the beam, we substitute the expression for M into the differential 

equation and integrate to obtain the slope ' . Such integration produces one constant of 

integration. Next, we integrate each slope equation to obtain the corresponding 

deflection  . Again, each integration produces a new constant. Thus, there are two 

constants of integration for each region of the beam. These constants are evaluated 

from known conditions pertaining to the slopes and deflections. The conditions fall into 

three categories: (1) boundary conditions, (2) continuity conditions, and (3) symmetry 

conditions. 
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Boundary conditions pertain to the deflections and slopes at the supports of a 

beam. For example, at a simple support (either a pin or a roller) the deflection is zero, 

and at a fixed support both the deflection and the slope are zero. Each such boundary 

condition supplies one equation that can be used to evaluate the constants of 

integration. 

Continuity conditions occur at points where 

the regions of integration meet, such as at point C in 

the beam of Fig. 6. The deflection curve of this 

beam is physically continues at point C, and 

therefore the deflection at point C as determined for 

the left-hand part of the beam must be equal to the 

deflection at point C as determined for the right-

hand part. Similarly, the slopes found for each part 

of the beam must be equal at point C. Each of this 

continuity conditions supplies an equation for 

evaluating the constants of integration. 

Symmetry conditions may also be available. For instance, if a simple beam 

supports a uniform load throughout its length, we know in advance that the slope of the 

deflection curve at the midpoint must be zero. 

Each boundary, continuity, and symmetry condition leads to an equation 

containing one or more of the constants of integration. Since the number of independent 

condition always matches the number of constants of integration, we can always solve 

these equations for the constants. 

Once the constants are evaluated, they can be substituted back into the 

expressions for slopes and deflections, thus yielding the final equations of the 

deflection curve. These equations can then be used to obtain the deflections and angles 

of rotation at particular points along the axis of the beam. 

The proposed method for finding deflections is called the method of successive 

integration. 
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Example 1 Determine the equation of the 

deflection curve for a simple beam AB 

supporting a uniform load of intensity q. 

Also, determine the maximum deflection 

max  at the midpoint of the beam and the 

angles of rotation at the supports. Assume, 

that the beam has length L and constant 

flexural rigidity EI. 

Solution (1) Bending moment in the beam. 

Since the left reaction is 2qL , the equation 

for the bending moment is 

 
2

2 2

qL qx
M x x  . (4) 

(2) Differential equation of the deflection 

curve. By substituting the expression for the 

bending moment into the differential 

equation (3), we obtain 

2

''( )
2 2

qLx qx
EI x   .    (5) 

This equation can be integrated to obtain the 

slopes and deflections of the beam. 

(3) Slope of the beam. Multiplying both 

sides of the differential equation by dx and 

integrating, we get the following equation 

for the slope:  

2 3

1'( )
4 6

qLx qx
EI x C    ,   (6) 

in which 1C  is a constant of integration. From the symmetry of the beam, the slope of 

the deflection curve at midspan is equal to zero. Thus, we have the following symmetry 

conditions: 
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' 0      when    2x L . 

Applying this condition to Eq. (6) gives 

2 3

10
4 2 6 2

qL L q L
C

   
     

   
,    or    

3

1
24

qL
C   .  (7) 

The equation for the slope of the beam then becomes 

2 3 3

'( )
4 6 24

qLx qx qL
EI x        (8) 

or 

3 2 3'( ) ( 6 4 )
24

   
q

x L Lx x
EI

 .    (9) 

As expected, the slope is negative (i.e., clockwise) at the left-hand end of the beam 

( 0x ), positive at the right-hand end ( x L ) and equal to zero at the midpoint 

( 2x L ). 

(4) Deflection of the beam. The deflection is obtained by integrating the equation for 

the slope. Thus, upon multiplying both sides of Eq. (8) by dx and integrating, we obtain 

3 4 3

2( )
12 24 24

qLx qx qL x
EI x C     .   (10) 

The constant of integration 2C  may be evaluated from the condition that the deflection 

of the beam at the left-hand support is equal to zero; that is, 0   when 0x  , or 

(0) 0 . 

Applying this condition to a Eq. (10) yields 2 0C  ; hence the equation for the 

deflection curve is  

3 4 3

( )
12 24 24

qLx qx qL x
EI x        (11) 

or 

3 2 3( ) ( 2 )
24

   
qx

x L Lx x
EI

 .   (12) 
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This equation gives the deflection at any point along the axis of the beam. Note that the 

deflection is zero at both ends of the beam ( 0x   and x L ) and negative elsewhere 

(recall that downward deflections are negative). 

(5) Maximum deflection. The maximum deflection max  occurs at the midpoint of the 

span (see Fig. b) and is obtained by setting x  equal to 2L  in Eq. (12). However, since 

max  represents the magnitude of the maximum deflection, and since the deflection  is 

negative when downward, we must insert a minus sign in the equation, as follows: 

4

max
5

2 384

L qL

EI
 

 
   

 
.   (13) 

(6) Angles of rotation. The maximum angles of rotation occur at the supports of the 

beam. At the left-hand end of the beam, the angle A , which is clockwise angle (see 

Fig. b), is equal to the negative of the slope ' . Thus, by substituting 0x   into Eq. (9), 

we find 

 
3

' 0
24

A
qL

EI
    .    (14) 

In the similar manner, we can obtain the angle of rotation B  at the right-hand end of 

the beam. Since B  is a counterclockwise angle, it is equal to the slope at the end: 

 
3

'
24

B
qL

L
EI

    .    (15) 

Because the beam and loading are symmetric about the midpoint, the angles of rotation 

at the angles are equal. 

Example 2 Determine the equation of the deflection curve for a cantilever beam AB 

subjected to a uniform load of intensity q (see figure). Also, determine the angle of 

rotation B  and the deflection B  at the free end. The beam has length L and constant 

flexural rigidity EI. 

Solution (1) Bending moment in the beam. The bending moment at distance x from the 

fixed support is obtained by the equation taking into account the vertical reaction at the 

support R qL  and the moment reaction 2 2qL : 

2 2

( )
2 2

qL qx
M x qLx    .    (16) 
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(1) Differential equation of the deflection 

curve. Substituting the preceding expression 

for the bending moment into the differential 

equation (3) we obtain  

2 2

''( )
2 2

qL qx
EI x qLx     .   (17) 

We now integrate both sides of this equation 

to obtain the slopes and deflections. 

(2) Slope of the beam. The first integration 

of Eq. (17) gives the following equation for 

the slope: 

2 2 3

1'( )
2 2 6

    
qL x qLx qx

EIv x C  (18) 

The constant of integration 1C  can be found 

from the boundary condition that the slope 

of the beam is zero at the support: '(0) 0 . 

When this condition is applied to Eq. (18) 

we get 1 0C  . Therefore, Eq. (18) becomes 

2 2 3

'( )
2 2 6

qL x qLx qx
EIv x          (19) 

and the slope is 

2 2'( ) (3 3 )
6

   
qx

x L Lx x
EI

 .    (20) 

As expected, the slope is zero at the support 

( 0x  ) and negative (i.e., clockwise 

throughout the length of the beam). 

(3) Deflection of the beam. Integration of the slope equation (19) yields 

2 2 3 4

2( )
4 6 24

qL x qLx qx
EI x C      .   (21) 
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The constant 2C  is found from the boundary condition that the deflection of the beam 

is zero at the support: (0) 0 . When this condition is applied to Eq. (21), we see 

immediately that 2 0C  . Therefore, the equation for the deflection   is 

2
2 2( ) (6 4 )

24
   

qx
x L Lx x

EI
 .   (22) 

As expected, the deflection  is zero at the support ( 0x  ) and negative (that is, 

downward) elsewhere. 

(5) Angle of rotation at the free end of the beam. The clockwise angle of rotation B  at 

the end B of the beam (see figure) is equal to the negative of the slope at that point. 

Thus, using Eq. (20), we get 

3

'( )
6

  B
qL

L
EI

  .    (23) 

This angle is the maximum angle of rotation for the beam. 

(6) Deflection at the free angle of the beam. Since the deflection B  is downward (see 

figure) it is equal to the negative of the deflection obtained from Eq. (22): 

4

( )
8

  B
qL

L
EI

  .    (24) 

This deflection is the maximum deflection of the beam. 

Example 3 A simple beam AB supports a concentrated load P acting at distances a and 

b from the left-hand and right-hand supports, respectively (see figure). Determine the 

equations of the deflection curve, the angles of rotation A  and B  at the supports, the 

maximum deflection max . Note that the beam has length L and constant flexural 

rigidity EI. 

Solution (1) Bending moments in the beam. In this example the bending moments are 

expressed by two expressions, one for each part of the beam. Since the left reaction is 

Pb L , we arrive at the following equations 

( )
Pb

M x x
L

      0 x a  ,    (25) 

 ( )
Pbx

M x P x a
L

        a x L  .   (26) 
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(1) Slopes and deflections of the beam. The 

first integrations of two differential 

equations yield the following expressions 

for the slopes 

2

1'( )
2

Pbx
EI x C

L
        0 x a  , (27) 

 
22

2'( )
2 2

P x aPbx
EI x C

L



     

 a x L  ,   (28) 

in which 1C  and 2C  are constants of 

integration. A second pair of integrations 

gives the deflections: 

3

1 3( )
6

Pbx
EI x C x C

L
     

  0 x a  ,  (29) 

3 3

2 4
( )

( )
6 6


   

Pbx P x a
EI x C x C

L


  a x L  .  (30) 

These equations contain two additional 

constants of integration, making a total of 

four constants to be evaluated. 

(2) Constants of integration. The four 

constants of integration can be find from the 

following four conditions: 

(1) At x a , the slopes '  for the two parts of the beam are the same; 

(2) At x a , the deflections   for the two parts of the beam are the same; 

(3) At 0x  , the deflection   is zero; 
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(4) At x L , the deflection   is zero. 

The first two conditions are continuity conditions based upon the fact that the 

axis of the beam is a continuous curve. Conditions (3) and (4) are boundary conditions 

that must be satisfied at the supports. 

Condition (1) means that the slopes determined from Eqs. (27) and (28) must be 

equal when x a ; therefore  

2 2

1 2
2 2

Pba Pba
C C

L L
       or    1 2C C .   (31) 

Condition (2) means that the deflections found from Eqs. (29) and (30) must be equal 

when; therefore 

3 3

1 3 2 4
6 6

Pba Pba
C a C C a C

L L
     .    (32) 

This equation gives 3 4C C . 

Next, we apply condition (3) to Eq. (29) and obtain 3 0C  ; therefore 

3 4 0C C  .      (33) 

Finally, we apply condition (4) to Eq. (30) and obtain  

2 3

2 0
6 6

PbL Pb
C L   .    (34) 

Therefore 

 2 2

1 2
6

Pb L b
C C

L


    .   (35) 

(4) Equations of the deflection curve. Let us substitute the constants of integrations 

(Eqs. (33) and (35)) and obtain the deflection equations for the two parts of the beam. 

The resulting equations, after a slight rearrangement, are 

2 2 2( ) ( )
6

   
Pbx

x L b x
LEI

     (0 ) x a ,   (36) 
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3
2 2 2 ( )

( ) ( )
6 6


    

Pbx P x a
x L b x

LEI EI
      a x L  .  (37) 

The first of these equations gives the deflection curve for the part of the beam to the left 

of the load P, and the second gives the deflection curve for the part of the beam to the 

right of the load. 

The slopes for the two parts of the beam can be found either by substituting the 

values  of 1C  and 2C  into Eqs. (27) and (28) or by taking the first derivatives of the 

deflection (Eqs. (36) and (37)). The resulting equations are  

2 2 2'( ) ( 3 )
6

   
Pb

x L b x
LEI

     (0 ) x a ,  (38) 

2
2 2 2 ( )

'( ) ( 3 )
6 2


    

Pb P x a
x L b x

LEI EI
      a x L  .  (39) 

The deflection and slope at any point along the axis of the beam can be calculated from 

Eqs. ((36), (37) and (38), (39). 

(5) Angles of rotation at the supports. To obtain the angles of rotation A  and B  at the 

ends of the beam (see figure), we substitute 0x   into Eq. (38) and x L  into Eq. (39): 

2 2( ) ( )
'(0)

6 6

 
    A

Pb L b Pab L b

LEI LEI
  ,   (40) 

2 2(2 3 ) ( )
'( )

6 6

  
  B

Pb L bL b Pab L a
L

LEI LEI
  .  (41) 

Note that the angle A  is clockwise (negative) and the angle B  is counterclockwise 

(positive) (see figure b). 

The angles of rotation are functions of the position of the load and reach their 

largest values when the load is located near the midpoint of the beam. In the case of the 

angle of rotation A , the maximum value of the angle is 

 
2

max

3

27
A

PL

EI
       (42) 
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and occurs when 3 0.577b L L  . This result is obtained by taking the derivative of 

A  (Eq. (40)) with respect to b and setting it equal to zero. 

(6) Maximum deflection of the beam. The maximum deflection max  occurs at point D 

(see figure b) where the deflection curve has a horizontal tangent. If the load is to the 

right of the midpoint, that is, if a b , point D is in the part of the beam to the left of the 

load. We can locate this point by equating the slope '  from Eq. (49) to zero and 

solving for the distance x, which we now denote as 1x . In this manner we obtain the 

following formula for 1x : 

2 2

1
3

L b
x


     ( )a b .    (43) 

From this equation we see that as the load P moves from the middle of the beam 

( 2b L ) to the right-hand end ( 0b  ), the distance 1x  varies from 2L  to 

3 0.577L L . Thus, the maximum deflection occurs at a point very close to the 

midpoint of the beam, and this point is always between the midpoint of the beam and 

the load. 

The maximum deflection max  is found by substituting 1x  (from Eq. (43)) into 

the deflection equation (Eq. (36)) and then inserting a minus sign: 

 
1

3 2
2 2

max ( )
9 3




  x x

Pb L b

LEI
      ( )a b .  (44) 

The minus sign is needed because the maximum deflection is downward (see figure b) 

whereas the deflection   is positive upward. 

The maximum deflection of the beam depends on the position of the load P, that 

is, on the distance b. The maximum value of the maximum deflection (the “max-max” 

deflection) occurs when 2b L  and the load is at the midpoint of the beam. This 

maximum deflection is equal to 3 48PL EI . 


