LECTURE 19 Combined Loading of a Bar Systems (part 2) Simplified Cases of Combined Loading

1 Unsymmetrical (Oblique) Bending

By oblique bending is meant a type of bending in which the plane of bending moment does not coincide with any of two principal axes of the section.

Fig. 1
Oblique bending can most conveniently be treated as two simultaneous plane bendings of a rod in two principal planes $x 0 z$ and $x 0 y$ (Fig. 1). For this purpose, the bending moment M_{B} is resolved into two components about the y and z axes:

$$
\begin{equation*}
M_{y}=M_{B} \sin \alpha, \quad M_{z}=M_{B} \cos \alpha . \tag{1}
\end{equation*}
$$

Fig. 2

The normal stress at an arbitrary point K of an arbitrary cross-section $A B C D$ having two coordinates z and y is determined as the algebraic sum of the stresses due to the moments M_{y} and M_{z} respectively, i.e.

$$
\begin{equation*}
\sigma_{x}=\frac{M_{y} z}{I_{y}}+\frac{M_{z} y}{I_{z}} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma_{x}=z \frac{M_{B} \sin \alpha}{I_{y}}+y \frac{M_{B} \cos \alpha}{I_{z}}=M_{B}\left(z \frac{\sin \alpha}{I_{y}}+y \frac{\cos \alpha}{I_{z}}\right) . \tag{3}
\end{equation*}
$$

It is known that centroid O belongs to the neutral axis, where $\sigma_{x}=0$. Its equation may be found analytically and graphically. In the last case we should design scaled graph of σ_{x} distribution over the contour $A B C D$. Analytically the equation of the neutral axis of the section is found by setting $\sigma_{x}=0$ into equation (3):

$$
\begin{equation*}
\frac{z}{I_{y}} \sin \alpha+\frac{y}{I_{z}} \cos \alpha=0 \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
z=\left(-\frac{I_{y}}{I_{z}} \cot \alpha\right) y=K_{2} y \tag{5}
\end{equation*}
$$

It can be seen that in oblique bending the neutral axis is not perpendicular to the plane of bending moment $\boldsymbol{M}_{\boldsymbol{B}}$. Indeed, the slope K_{1} of the trace of the plane of moment (Fig. 1) represents the tangent of the angle α :

$$
\begin{equation*}
K_{1}=\tan \alpha \tag{6}
\end{equation*}
$$

The slope of the neutral axis (formula 5) is

$$
\begin{equation*}
K_{2}=-\frac{I_{y}}{I_{z}} \cot \alpha \tag{7}
\end{equation*}
$$

As $I_{z} \neq I_{y}$ in the general case, the condition of perpendicularity of straight lines, known from analytic geometry, is not fulfilled:

$$
\begin{equation*}
K_{1} \neq-\frac{1}{K_{2}} \tag{8}
\end{equation*}
$$

Since the diagram of normal stresses distribution in the section is linear, the maximum stress occurs at the point which is the most remote from the neutral axis. In Fig. 2 two angular points B and D are most remote with $\sigma_{x}\left(M_{y}\right)$ and $\sigma_{x}\left(M_{z}\right)$ summarizing effect:

$$
\begin{equation*}
\sigma_{D}=\left|\sigma_{B}\right|=\sigma_{x_{\max }}=\frac{M_{y} \times h / 2}{I_{y}}+\frac{M_{z} \times b / 2}{I_{z}} \tag{9}
\end{equation*}
$$

where h and b height and width of the section.
Because stress state in B and D points is uniaxial, condition of strength for unsymmetrical bending is

$$
\begin{equation*}
\sigma_{x_{\max }}=\frac{M_{y} \times h / 2}{I_{y}}+\frac{M_{z} \times b / 2}{I_{z}}=\frac{M_{y}}{W_{y}}+\frac{M_{z}}{W_{z}} \leq[\sigma] \tag{10}
\end{equation*}
$$

Example 1

A rectangular, simply supported beam of length $L=2 \mathrm{~m}$ is loaded by $F=10 \mathrm{kN}$, whose plane of action is inclined at $\alpha=30^{\circ}$ to the z axis, as shown in Fig. 3. Determine (a) the maximum bending stress in the beam and (b) the orientation of neural axis.

Fig. 3
Solution The centroidal principal moments of inertia of the cross section are

$$
\begin{aligned}
& I_{y}=\frac{1}{12}(0.06)(0.09)^{3}=3.64 \times 10^{-6} \mathrm{~m}^{4} \\
& I_{z}=\frac{1}{12}(0.09)(0.06)^{3}=1.62 \times 10^{-6} \mathrm{~m}^{4}
\end{aligned}
$$

(a) The load components are $F \cos \alpha$ in y-direction and $F \sin \alpha$ in y-direction. Thus, the maximum bending moments occur in the cross section at midspan and are expressed by

$$
M_{y_{\max }}=\frac{1}{4} F L \cos \alpha, \quad M_{z_{\max }}=\frac{1}{4} F L \sin \alpha(\text { see Fig. 4). }
$$

Fig. 4

Fig. 5

Substituting the data, we have (Fig. 5):

$$
\begin{aligned}
& M_{y \max }=\frac{1}{4}(10)(2) \cos 30^{\circ}=4.3 \mathrm{kNm} \\
& M_{z \max }=\frac{1}{4}(10)(2) \sin 30^{\circ}=2.5 \mathrm{kNm}
\end{aligned}
$$

To determine the maximum bending stress we must calculate the acting stresses in four angular points of midspan cross section:

$$
\begin{aligned}
\sigma_{A}= & \sigma_{\max }\left(M_{y_{\max }}\right)+\sigma_{\max }\left(M_{z_{\max }}\right)= \\
& =\frac{M_{y_{\max }} z_{\max }}{I_{y}}+\frac{M_{z_{\max }} y_{\max }}{I_{z}} .
\end{aligned}
$$

In our case, $\quad z_{\max }=h / 2=4.5 \times 10^{-2} \mathrm{~m}$, $y_{\text {max }}=b / 2=3 \times 10^{-2} \mathrm{~m}$.

As the result

$$
\begin{gathered}
\sigma_{A}=\frac{4.3 \times 10^{3} \times 4.5 \times 10^{-2}}{3.64 \times 10^{-6}}+\frac{2.5 \times 10^{3} \times 3 \times 10^{-2}}{1.62 \times 10^{-6}}= \\
=+53.2+46.3=+99.5 \mathrm{MPa},
\end{gathered}
$$

$$
\sigma_{B}=-\sigma_{\max }\left(M_{z_{\max }}\right)+\sigma_{\max }\left(M_{y_{\max }}\right)=
$$

$$
=-53.2+46.3=-6.9 \mathrm{MPa}
$$

$$
\sigma_{C}=-\sigma_{\max }\left(M_{y_{\max }}\right)-\sigma_{\max }\left(M_{z_{\max }}\right)=-53.2-46.3=-99.5 \mathrm{MPa}
$$

$$
\sigma_{D}=\sigma_{\max }\left(M_{y_{\max }}\right)-\sigma_{\max }\left(M_{z_{\max }}\right)=53.2-46.3=+6.9 \mathrm{MPa}
$$

The maximum flexural stress is therefore 99.5 MPa .

Fig. 6
(b) The angle φ that the neutral surface forms with the horizontal plane is calculated using (3) by analogy:

$$
\begin{gathered}
\sigma_{F}=\frac{M_{y_{\max }}}{I_{y}} z+\frac{M_{z_{\max }}}{I_{z}} y=0 \\
z=-\frac{M_{z_{\max }}}{M_{y_{\max }}} \frac{I_{y}}{I_{z}} y=-\frac{\sin \alpha}{\cos \alpha} \frac{I_{y}}{I_{z}} y=\left(-\frac{I_{y}}{I_{z}} \tan \alpha\right) y,
\end{gathered}
$$

$z=k y$, where $k=\tan \varphi=-\frac{I_{y}}{I_{z}} \tan \alpha=-\frac{3.64}{1.62} \tan 30^{\circ}=-1.297$.
$\varphi=-52.4^{\circ}$ (clockwise rotation relative to y-axis).
The stress distribution across the cross section at the midspan is depicted in Fig. 6.

3 Eccentric Tension and Compression

In eccentric tension the resultant of external forces does not coincide with the axis of a rod, as in ordinary tension, but is shifted relative to the x axis and remains parallel to it (Fig. 7).
Let the point A of external force resultant application has the coordinates z_{0} and y_{0} in the section (Fig. 7). In all cross-sections far from external force application, for example in KLMN cross-section (Fig. 8), the moments produced by the resultant force F about the principal axes are

$$
\begin{equation*}
M_{y}=F \times z_{0}, \quad M_{z}=F \times y_{0} \tag{11}
\end{equation*}
$$

Fig. 7

Fig. 8
Thus, eccentric tension-compression is similar to oblique bending. In contrast to the latter, however, a normal force $N_{\boldsymbol{x}}=\boldsymbol{F}$, as well as bending moments, occur in the cross-section of the rod. The normal stress σ_{x} at an arbitrary point B of $K L M N$ section with coordinates z, y is determined by the following expression:

$$
\begin{equation*}
\sigma_{x}=\frac{N_{x}}{A}+\frac{M_{y}}{I_{y}} z+\frac{M_{z}}{I_{z}} y \tag{12}
\end{equation*}
$$

or

$$
\left.\begin{array}{l}
\sigma_{x}=\frac{F}{A}+\frac{F \times z_{0}}{I_{y}} z+\frac{F \times y_{z}}{I_{z}} y, \\
\sigma_{x}=\frac{F}{A}\left(1+\frac{z_{0} \times z \times A}{I_{y}}+\frac{y_{z} \times y \times A}{I_{z}}\right), \tag{13}\\
\sigma_{x}=\frac{F}{A}\left(1+\frac{z_{0} \times z}{i_{y}^{2}}+\frac{y_{z} \times y}{i_{z}^{2}}\right),
\end{array}\right\}
$$

where i_{y}, i_{z} denote the radii of gyration of the section

$$
\begin{equation*}
i_{y}=\sqrt{\frac{I_{y}}{A}}, \quad i_{z}=\sqrt{\frac{I_{z}}{A}} . \tag{14}
\end{equation*}
$$

The equation of the neutral axis in the section may be found analytically by setting $\sigma_{x}=0$ in equation for stress in arbitrary point $(12,13)$:

$$
\begin{equation*}
1+\frac{z_{0} \times z}{i_{y}^{2}}+\frac{y_{0} \times y}{i_{z}^{2}}=0, \rightarrow \frac{z}{\left(-\frac{i_{y}^{2}}{z_{0}}\right)}+\frac{y}{\left(-\frac{i_{z}^{2}}{y_{0}}\right)}=1 \tag{15}
\end{equation*}
$$

This is straight line which does not pass through the centroid of the section. It cuts two segments from the y and z coordinates

$$
\begin{equation*}
a_{z}=-\frac{i_{y}^{2}}{z_{0}}, \quad a_{y}=-\frac{i_{z}^{2}}{y_{0}} \tag{16}
\end{equation*}
$$

Graphically, the position of neutral axis may be find designing scaled graph of stress distribution along the contour KLMN.

The maximum stress occurs in one of four angular points of the cross-section contour where three internal force factors N_{x}, M_{y}, M_{z} produce largest in magnitude stresses. In our case, N point is critical for the section and

$$
\begin{equation*}
\sigma_{N}=\sigma_{x_{\max }}=\sigma\left(N_{x}\right)+\sigma_{\max }\left(M_{y}\right)+\sigma_{\max }\left(M_{z}\right)=\frac{N_{x}}{A}+\frac{M_{y}}{I_{y}} h / 2+\frac{M_{z}}{I_{z}} b / 2 \tag{17}
\end{equation*}
$$

Because stress state in critical N point is uniaxial condition of strength for eccentric tension is

$$
\begin{equation*}
\sigma_{x_{\max }}=\frac{N_{x}}{A}+\frac{M_{y}}{I_{y}} h / 2+\frac{M_{z}}{I_{z}} b / 2=\frac{N_{x}}{A}+\frac{M_{y}}{W_{y}}+\frac{M_{z}}{W_{z}} \leq[\sigma] \tag{18}
\end{equation*}
$$

Concept of cross-section core.

In the vicinity of the centroid there exists a region called the core of the section. If the trace of the force F is inside the core of the section, the stresses are of the same sign at all points in the section. If the force is applied outside the core of the section, the neutral axis crosses the section and the stresses on the section are both compressive and tensile.

Example 2

Fig. 9

What is the largest force F that can be supported by block shown in Fig. 8 if the allowable stresses are $[\sigma]_{c}=80 \mathrm{MPa}$ in compression and $[\sigma]_{t}=20 \mathrm{MPa}$ in tension? $h=0.1 \mathrm{~m}, b=0.06 \mathrm{~m}$.

Solution The eccentric external creates in an arbitrary section $A B C D$ a normal internal force N_{x} and two internal bending moments

$$
M_{y}=F \times \frac{h}{2}=0.05 F \mathrm{Nm} \text { and }
$$

$$
M_{z}=F \times \frac{b}{2}=0.03 F \mathrm{Nm}(\text { Fig. 10) }
$$

The area and the moments of inertia of the cross section are

Fig. 10

$$
\begin{gathered}
A=0.06 \times 0.1=0.006 \mathrm{~m}^{2} \\
I_{y}=(0.06)(0.1)^{3} / 12=5 \times 10^{-6} \mathrm{~m}^{4}, \\
I_{z}=(0.1)(0.06)^{3} / 12=1.8 \times 10^{-6} \mathrm{~m}^{4}
\end{gathered}
$$

The stress due to the axial load N_{x} is

$$
\sigma\left(N_{x}\right)=-\frac{F}{A}=-\frac{F}{0.006}=-166.67 F .
$$

The maximum values of stress owing to bending moments M_{y} and M_{z} are, respectively,

$$
\begin{aligned}
& \left|\sigma_{\max }\left(M_{y}\right)\right|=\frac{M_{y} \times z_{\max }}{I_{y}}=\frac{0.05 F(0.05)}{5 \times 10^{-6}}=500 F, \\
& \left|\sigma_{\max }\left(M_{z}\right)\right|=\frac{M_{z} \times y_{\max }}{I_{z}}=\frac{0.03 F(0.03)}{1.8 \times 10^{-6}}=500 F .
\end{aligned}
$$

The maximum compressive stresses act in the N point

$$
\sigma_{N}=\sigma_{\max }=-\sigma\left(N_{x}\right)-\sigma_{\max }\left(M_{y}\right)-\sigma_{\max }\left(M_{z}\right)=-166.67 F-500 F-500 F=-1166.67 F
$$

In another points of the cross-section contour the following stresses act:

$$
\begin{aligned}
& \sigma_{K}=-\sigma\left(N_{x}\right)+\sigma_{\max }\left(M_{y}\right)-\sigma_{\max }\left(M_{z}\right)=-166.67 F+500 F-500 F=-166.67 F \\
& \sigma_{L}=-\sigma\left(N_{x}\right)-\sigma_{\max }\left(M_{y}\right)-\sigma_{\max }\left(M_{z}\right)=-166.67 F-500 F+500 F=+833.33 F \\
& \sigma_{D}=-\sigma\left(N_{x}\right)-\sigma_{\max }\left(M_{y}\right)-\sigma_{\max }\left(M_{z}\right)=-166.67 F-500 F+500 F=-166.67 F
\end{aligned}
$$

The largest, so called allowable external force $[F]$, may be calculated from the condition of strength in the most tensioned and compressed points of cross section

$$
\begin{gathered}
\sigma_{\text {tens }}^{\max }=\sigma_{C} \leq[\sigma]_{t}, \quad 833.33[F]_{\text {tens }}=20 \times 10^{6} \\
{[F]_{\text {tens }}=\frac{20 \times 10^{6}}{833.33}=24 \mathrm{kN}} \\
\left|\begin{array}{c}
\sigma_{\text {comp }}^{\max } \mid
\end{array}\right|=\left|\sigma_{A}\right| \leq[\sigma]_{C}, \quad 1166.67 .33[F]_{\text {comp }}=80 \times 10^{6} \\
{[F]_{\text {comp }}=\frac{80 \times 10^{6}}{1166.67}=68.6 \mathrm{kN}}
\end{gathered}
$$

The magnitude of the maximum allowable eccentric external load is the smaller of these values, $[F]=24 \mathrm{kN}$.

