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LECTURE 24 Continuous (Multispan) Beams and the Method of Three
Moments

Beams that have more than one span and do
there are continuous throughout their l l l l l l l l l
lengths (Fig. 1) are known as continuous o 3

beams. They are commonly encountered @
in aircraft, bridges, buildings, pipelines — 41—

and various kinds of specialized a, >
|

)
t~
Y

structures.  Continuous  beams  are
statically indeterminate and may be Fig. 1

analyzed by the method of superposition.

In this lecture, we describe a particular form of the superposition method, called the
method of three moments, that is especially useful in the analysis of the continuous
beams.

We assume that all loads acting on the beam are vertical and that there are no
restraints against rotation at the supports (that is, none of the supports is fixed or
clamped). In addition, we assume that there are no axial deformations due to restraints
against horizontal movement. Under these conditions, all reactions at the supports are

vertical forces.
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Fig. 2
The design scheme of continuous beam is represented in Fig. 3
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2 V. DEMENKO  MECHANICS OF MATERIALS 2020

A system may be singly, two-fold, three-fold,...., m-fold statically indeterminate,
depending on the number of redundant supports.
Consider the n und n+1 spans. The moments M,_;, M, and M, are applied

to replace the removed constraints between adjacent spans:

M, 1Fn M, anH M 11

(=) =)

! ln | ln+l =!

=

Fig. 4
The moments shown in Fig. 4 are considered positive. The displacement equation
expresses the fact that the mutual angle of rotation of the adjacent sections of the

spans n and n+1 over the n-th support must be zero (Fig. 5):

‘®n,n‘:‘®n,n+1‘- (1)

M

n—1 1Fn M,
(n—l n>
-‘-\\\-—é’i/:ﬁ:
n,n
N
Fig. 6
Evidently, that ©y, , =Op p(F)+©n n(My_1)+0p n(Mp). 2)

Determine these angles. For this purpose we draw moment diagrams due to the given

forces. The rigidity El is assumed to be the same for all the spans:
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To calculate the ©,, ,(Mj_1) angle we will use

i L .
M, ! the Vereschagin’s method:

|

| | N
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' I =
' |
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Fig. 8
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Ml’l
©p, n(My) ™|
n—1r y n
A - v To calculate the ®, (M) angle we will use
| n the Veresschagin’s method:
:\W@i Myp(x)
|
I Ml’l

- EIL 2 )3
1 —
'\ |
| 20 -
3\
WMy(x)
1
Fig. 9

Substitute the results obtained in expression (2):

Mn—lln n Mnln

Onn=nn+ . (6)
6El,  3Ely
(b) Consider the n+1 span and determine the ®, .1 angle:
" 0 Fu M, _
; n, n+l 1 _ Evidently, that
_A:\;\___//:A: Onn+l = ®n,n+1(Fn+1)+®n,n+l(Mn)+
[
!= ntl . +0nn41(Mny1)- (7)
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F
®n, n+l (Fn+1) l

| M vF (x) .
W In accordance with the Mohr’s method
M :

Ih+1

- . OnnalFra)= gy My (0 0=
= ;:A: =—Cn,n+1- (8)
1] |
m: M, (x)
Fig. 11
M o, M)
n ¥n’n " ln-i-l
=7 ln+1

To calculate the ®y, ,,1(Mp,) angle we will

use the Vereschagin’s method:

n+1 @n,n+1(Mn): E::' (Mn;nﬂj(_%)_ (9)
y
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M
®n, nil(Mpp) = s
n . . n+1
.‘.\\7 ————— -
/ L
n+l

' MyF(x) .
N%@i To calculate the ®p, 41 (Mp) angle we will
M

use the Vereschagin’s method:

[

! |

' |

o

! In+1 1 M | 1

; 1 o, M — n+1n+1J(__j_ 10
| :A: n,n+l( n+1) Ely( 2 3 (10)
[

[

|

[

Fig. 13

We substitute the results obtained into expression (7)

— Mnlha Mnialnia
é%,nﬂ(‘“n,nﬂ)"‘[‘ﬁ + _W : (11)

Equation (1) takes the form

Mpqln Mgl Ml M.l
ann+ n-1'n A 11 =l - n'n+l  "Vin+l n+1_ (12)
6EIy 3EIy 3EIy 6EIy

The equation assumes the following final form

Mp_aly + 2Mn(ln + In+l)+ Mnalna :_6E|y(an,n +0‘n,n+1)- (13)
This equation is known as the equation of three moments. The principle of deriving
such equations for a multispan beam is sufficiently clear. The equation of three
moments is set up for each pair of adjacent spans with all pairs considered in
succession. Consequently the number of equations for a multispan beam is equal to
the degree of static indeterminacy.

After the equations have been solved and the moments found, it is an easy matter

to draw a bending moment diagram and to find the stresses in the beam.
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Example 1 Open the statically indeterminacy of the beam shown in Fig. 14.
Given: F=10 kN, g=10 kN/m, M p =20kNm, Mg =40kNm, M =30kNm, a=1m,

b=2m, c=3m, d=1m

Qz(x), My (x)-?

M 4 —»MB MC<—
B
4 By y ‘ Y v vy Yy vy vy vy
A a b c d
F - L.
—
Equivalent system: _]\f B
My [ M,
(.A. b >
-
M1<B" Y * Y Y Y VYVYY >M2
c
Fig. 14
In this case
Mg = Fa—M 5 =10x1— 20 = —10kNm,
d? 1
MZ:—q7+MC:—1O§+30:+25kNm.
r—
Mp
A _--""7 7 dlﬁ//\ Mgb 40x2 80
< 7 o 1=011(Mg)=——72-=- ==
A p ¥ 3El  3El  3EI
]
Fig. 15
q
BY YA Y Y Y Y Y VY YC qc3 10x 33 45
\] — o = =+ =+ =+
/\ ________ - 12=42(0) =+ e = e TV g
2 €
Fig. 16
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Substituting into equation (13) we get

—10x2+2My(2+3)+25x3=—-6El _80 .8
3El 4El

From this solution, M1 =+3.75 kNm.

Therefore, opening of static indeterminacy is finished and we will consider the

equilibrium of two separate spans:

(a) left span:
Rp =13.125kN
M, B 1 Mz =40kNm
= e
A B >
M;=3.75kNm
f a A b :
F — e
Y R4=23.125kN
10
@ % 0. (x), kNm
13.125
0 é 36.25
= M ,(x), KNm
10

Fig. 17
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(b) right span:
\ R =17.9kN
Mc=30kNm
M =3.75kNm

(Bw o T | e TR A
x ¢ d
Rp =22.08kN -

22.08 10

e

m 0. (x), kNm
\‘\W

3.75

M =28.

Ymax

Fig. 18

) 25

1

5
M M, (x), kNm

Example 2 Open the static indeterminacy of the beam shown in Fig. 19.

Given: F=10 kN, a=1m, b=2m, c=3m
Q, (x), My(x)—?

F
B C D y
a b 2 c
|
Equivalent system: | i i
| | |
M Al¥1 A)Ilz i Ms =Fc

i 7 | >

______________________ 4 J U | -

Y SR A\ A A
A B C D
Fig. 19
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The system is two-fold statically indeterminate. A feature of the system is the
presence of the overhanging end on the right and the built-in end on the left. We
transfer the force F to the point over the right support and introduce the moment M3 in

place of the removed overhang (cantilever part).
We replace the built-in fixation by two infinitely close supports, i.e., we
introduce a span of length l; =0 on the left. Equivalent system is shown in Fig. 19

For the pair of spans AB and BC equation (13) becomes
M0|1 + 2|V|1(|1 + |2)+ |V|2|2 =—6El (0{1’1 +a1'2), Mo = 0, al’l = 051’2 =0.
|1:0, |2 =a, |3 =b.
We proceed to the second pair of spans. The moment of the given force
Mp =M3 may be considered either as a support moment equal to —Fc or as a given

external load. We shall consider the moment — Fc¢ as a support moment. Equation (13)
then yields
Mily +2Mo(lp +I3)+ M3ly =—6El(ap o +ap3), @29 =ap3=0.
By solving the equations obtained simultaneously, we find
0x0+2M;(0+a)+Mja=0,
{M1a+2M2(a+b)— Fcb =0,

__2FC 1591 knm, My =—2C—545KkNm.
3a+4b

3a+4b
Thereafter we draw a bending moment diagram connecting to separately

2

considered spans:

My =5.45kNm
1 M, =10.91kNm

s
A L=a=1m :AD F=10kN
|

|
|
M, =10.91kNm ( |

Fig. 20
The graphs of internal forces are shown on Fig. 20. They are designed after the

reactions Rg, Rg (left span), and Ri, Rp (right span). Note, that actual directions of

the reactions are shown on Fig. 20.
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My =5.45kNm
( 1 1 > M, =10.91kNm
-‘- l2 =a=1m A:
A
Rp=545kN Y R =5.45kN
5.45
@ 0. (). kN
5.45
10.9
R(-=20.45kN Rp=3045kN  F=10kN
A
My =10.9 kNm (  C" D ,
l3=b=2m :A: c=3m
10
0. (x), kN @
20.45
30
M, (x), kNm
10.45 W
Fig. 21

Example 3 (Home problem)

Given: two-span beam (see Fig. 1), M =10kNm, g =20kN/m, a=3m,
b=2m, c=2m, d =1m.

It is necessary:

1) open static indeterminacy using three moment equations and design My(x)

and Q, (x) diagrams;
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12 V. DEMENKO  MECHANICS OF MATERIALS 2020

2) open static indeterminacy using force method and design My(x) and
Q, (x) diagrams;

3) compare the results.

Solution:

(A) Application of the equation of three moments.

(1) First of all we determine the degree of static indeterminacy according to the
formula

K=m-n,

where K is the degree of static indeterminacy, m is the number of unknown
reactions, n is the number of equations of static equilibrium. So, m=4;n=3 and
K =1. The fact of the beam being singly statically indeterminate gets obvious.

(2) Designing the equivalent system (see Fig. 1). It is developed by introducing
virtual hinge into mid support cross section and adding into it unknown internal
bending moment M4 = X;. Also, internal bending moments in left and right supports
are represented in equivalent system by two concentrated moments My and M.

They are calculated by applying the method of sections using sign conventions

shown on Fig. 2.

M
dm dm
A A A A A A A A A A A
@ v A B
a
A AN S
a b c d
\ \
M
My M,
, LA A A A A A
Equivalent IA B( B’ . C
() system ‘ i
b —- M;=X c
B \

Fig. 1
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Note, that the moments My, My, M, are applied in their positive directions

according to the sign conventions, shown on Figs. 2, 3.

Sign conventions:

a) for shear forces b) for bending moments
m m m
PA PA M " M
M M
y y = ——

++++ ++_|_+ y
Yy z Yo z z
m m m m

m-—m m—m —

7 <0 7 >0 M{/n—m>0 M{/‘ﬂ m<0

Fig. 2 Fig. 3

The values of the moments Mg, M, are the following:

2
Moz—q—;xga:—mkNm, M2:+%:+10 KNM.

(3) Calculating the unknown bending moment M; from the equation of three

moments.

In general, the equation of three moments looks like:
Mol +2My(lp +15) + Moly =—6El (o + £3),
where ljand |, are the lengths of the left and right span respectively, Mg is internal
moment in cross-section of left support, M; — unknown internal moment in cross-
section of middle support, M5, is internal moment in cross-section of right support.
We have already defined the values of My and M. For our case, l; and |, are

correspondingly the lengths of left and right spans which are equal to b=2 m and
c=2 m. The angles «,  are really the slopes which are generated by only external
forces and moments applied correspondingly to the left and right span: « — angle in
right support of left span and g — in left support of right span. Note, that external

forces and moments which were earlier included into My, M5 calculating, should
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14 V. DEMENKO  MECHANICS OF MATERIALS 2020

not be included into a, B calculating. Left and right spans are shown on Figs 4 and

5 with corresponding shapes of deflected curve under loading mentioned above. Due
to the M external moment is applied in midsection, it may be considered as the
deflection generator of left or right span, depending on our wish. It this solution, we
will assume the M moment be applied to left span. Note also, that the angles
corresponding to convex deflection are assumed to be positive in three moment

equation and vice versa.

M
o g dm
A A A A A A A A

PR NSEEEERN)
A / A g

5 b ‘T . c

~ - . -

Fig. 4 Fig. 5

(@) Let us define the « and g angles using well-known formula from teaching

aids:

a<0 a=- =—
El

Mb 20 | kNm?
3El  3El '

Note, that « <0 due to concave shape of left span deflection curve which is
assumed to be negative in proving three moment equation. Due to this assumption £
angle will also be negative:

3 2

qc 20 | kNm
<0 =— =— :
p p 24El 3El { El }

(b) Let us define the « and S angles using Mohr’s method. For this purpose,

we will consider the left and right spans under external loadings as the force systems

(F) and will design two corresponding unit systems applying unit dimensionless
moment M =1 in right support of the left span (to calculate « angle) and unit
dimensionless moment M =1 in left support of the right span (to calculate 3 angle).
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Note, that unit moments are applied in arbitrary directions and results of

calculation may be positive or negative depending on the M =1 direction.

left span Iy right span
pre—
Ry )i [ m
A A AA A A A
vA B’ @ B’ C @
b .‘. c
X X
Y A nY A
z Rj YRc
Ry
— - A = ~— M:l —
RA“ 1 1 RC
B B" C
A Y
. o ®
c
X X
p— .
ZV - _A v,
YRj Rp
Fig. 6 Fig. 7

Calculating the reactions in the unit systems (clockwise rotation is assumed to
be positive):
leftspan > Mg =0=-Rpb+M — Rp=1/b=05m, Rg =Rp=05m,
rightspan > Mgr=0=R:c-M — Rz =1/c=05m, Rg'=Rc=05m.
Calculating the reactions in the force systems:
leftspan D> Mpg'=0=—-Rpp+M — Rp=M/b=10/2=+5kN, Rg=+5kN,
rightspan > Mgr=0=RcC—qnc2/2 — Rc =+20kN, Rgr =R =+20kN.
Equations of bending moments are the following:

left span M}',,:(x):—RAx:—Sx,
M{,(x)zﬁAx:O.Sx.

right span M }',,: (x)= qx2 /2 - REX = (10x2 — 20x),
My (x)=—M + Rgx = (~1+05x).
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Results of the Mohr’s method calculations are:

- 3
a:é_ jg(—5x)(0.5x)dx}:%{—2.5%}=—%’

17 2 20
L= = _J'O (10x - 20x)(—1+ O.5x)dx} =t

Taking into account the notations mentioned above, negative values of these

angles, i.e. a = —32—0 and g = —32% are substituted into three moment equation:

(—60)x 2+ 2My (2+ 2) + (+10) x 2 = —6El (____j.

After substituting we obtain the result: M;=+22.5kNm. It means that static

indeterminacy of specified beam is opened and it is possible to determine the internal

forces in equivalent system shown on Fig. 1. Note, that in the case of negative M;

value it should be applied to both spans of equivalent system in opposite directions.
(4) Considering the left and right spans separately and constructing the internal
force factors diagrams for each of them. The spans are shown on Figs. 8 and 9.
(a) left span (see Fig. 8). Note, that clockwise rotation is assumed to be

positive in the reactions calculating.

_ gma( 2
ZMB':O' _%(ga—i_b)—i_RAorigb_i_M_Ml:O'

Ra,. I FVIRY +M[3a+bj _1 22.5—10+30X2(3x2+2j — +66.25kN
g b 2 |3 2 2 |3

(actual direction upwards).

Qma2

3

ZMA:O: — +Ri30rigb+M_Ml:O'

2
Re . = My —M +Imd | 10505 10,30%4)_ 3505kN
orig 3 | 2 2

(actual direction downwards).
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17

(@)

(b)

(c)

25.11.2020

M
dm Il Ry

‘ orig 1 ]\/[1
WV\P\ 4 B

A

X X

" orig
RBorig
Ry ” T gy

orig

—
I
=
=
T
I

36.25

QZ (X), kN RB" 4 z

13.75

30

N
A\S
N
v 4

/1 26.25

M, (x),kNm - M, (x), KNm

12.5 22.5

Fig. 8 Fig. 9
Checking:

, 20x3

Lo=0 - + —66.25+36.25=0.
orig

_n- Oma
> F, =0: +T_RAorig +R

Equations of internal forces are the following:
I-1: 0<x<b

l /N D _
Q; (X) =Rp,; =+36.25kN,

| '
M y(X) = _RBorig X—M + Ml |X=0:12'5 |X=2: —60 KNm.

IH-1l: 0<x<a
2
Ny _pr OmX _ _
z (X)_RBOI’ig prrig + 2a |X=O_ 30|X=a_(;’
I ' gXx
My () =—Rg,.. (x+b)—M +Myq + R Aorig X ly=0=—60]|y-a=0.
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(b) right span (see Fig. 9). Note, that clockwise rotation is assumed to be

positive in the reactions calculating.

2 2
. _9md”  OmC "
>M,=0: -4 M +RE, ¢+ M1=0.

2 2
2 2
Ry =2l 9mdT_ Gmc” =3( 20X1—20><4—22.5j:—26.25kN
org ¢ 2 2 2\ 2 2
(actual direction downwards).
: q 2
ZMB":O' _RCorigC+Ml_7m(C+d) =0.
_ v Om 2)_1 20 2)_
RCorig —C(Ml 5 (c+d) j_2(22.5 5 (2+1) j_ 33.75kN

(actual direction downwards).
Checking:
> F,=0: —qg(c+d)+Rc,_ +Rp =0 — —60+33.75+26.25=0.
Equations of internal forces are the following:

I—-1: 0<x<d
Q; (X) = ~GmX ly—0= 0 ly—g = —20(kN),

|y OmX
My (x) = m2 x=0=0lx=g =10(kNm).

IH-11: 0<x<c
3 (X)=—R_ +0mX|x_o=—26.25],_c=13.75kN,

2

I " OmX
My (X) =M -Rg_ X+ m2 lye0=22.5|y_c=10 kNm.

Extremal bending moment calculating:

4

RB, 26.25
Om 20

=1.31m.

; (Xe)=—Rp,, +WX =0 — X =

2
I I " OmX 2
My () =My =M;-Rb_ X+ m2e ~10-26.25x1.31+ 20x1.312 /2 = ~3.34(kNm).

By connecting the graphs of internal forces for two spans we get the solution of the

problem shown on Fig. 10.
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(B) Solution by the force method.
First of all let us choose the base system (BS) and design corresponding

equivalent system (ES) (see Fig. 11). Designing correspondent equivalent system is
also shown on Fig. 11. The effect of middle support is replaced in equivalent system
by unknown reaction (force) X;. Its value must be found using the equation of
deflection compatibility, which is represented as canonical equation of the force
method. Their geometrical sense is in total zero vertical deflection of vertically
immobile B point of equivalent system. This deflection is really a geometric sum of
the B-point deflection generated by external forces and, secondly, by unknown X;
force. This canonical equation has the shape:
Sert, g (X1, F)=0 or &1X;+4F =0.

(@)

36.25

(+)

12.5 10

Fig. 10
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To find two coefficients 617 and 4 it is necessary to design the force (F) and

unit (1) systems. They are shown on Fig. 11. Note, that the force system is the base

system with only external forces applied. Unit system is the base system with unit

X1 force applied. They are shown on Fig. 11.

The unknown reactions Rp and R in the force system (F) we will calculate

using the equations of statics:

ZMA:O:—qgax§a+M +Rc(b+c)—qm(c+d)(%+bj.

2
Re =—| Im@” _, +qm(c+d)(ﬂ+bj 1L 20X9—10+20><3(§+2j = +65kN
b+c| 3 2 4\ 3 2

(actual direction downwards).

2 2
4 GmC _ gmd .

ama [ 2
Me~=0=- —a+b+c|+M+Ra(b+cC
> Mc¢ 5 X(?) j a(b+c) 5 5

2 2
RA:L M(Ea+b+cJ—M—qu +quI -
b+c| 2 2 2

20902, 3101 0]-10- 2, 20 a5y
a2 (3 2 2

(actual direction upwards).
Checking:

a 20x3
ZFZ:O:q%—qm(c+d)—RA+RC:

2

~20(2+1)—35+65=0.

The unknown reactions Ra and R in the unit system (1) we will also calculate

using the equations of statics:

> Mpa=0=+Rc(b+c)-X1b=0 — Rc :%(dimensionless)

(actual direction upwards).

> Mg =0=-Ra(b+c)+X1c=0 — R_Azé(dimensionless)

(actual direction upwards).
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V. DEMENKO  MECHANICS OF MATERIALS 2020

Checking: >'F, =0=RA +Rc —)?1:%+%—1:0.

Equations of internal forces in the force and unit systems are the following:
I —-1: 0<x<d

Myr (x)= qm2X2 ~[t0¢?),

M)',(x):o.

IH—-1l: 0<x<c

2
Mk (%) = gnd (%+xj+ qm2X ~Rox=(10-45x+10x%),

I —11: 0<x<b

M)',',l(x):qmd(%+c+xj+qmc(%+x)—RC(c+x)—M = (-50-5x),

vall X
! (x):(—1+5)
IV-IV: 0<x<a

3
M;'/\lé =de(%+0+b+xj+qmc(%+b+xj—RC(c+b+x)—M +RAx+qg‘: =

=(%x3+30x—80),

M{,V(x)=o.

Calculating the canonical equation coefficients applying Mohr's method.

Af = é[i(loxz)(o)dx ¥ E(lO — 45 +1Ox2)(—§j ¥ i(—so —5X)(—l+ gjdx ¥

3
+f 19,5 + 30x 80 |(0)dx | = + 222
L9 3El

all:él}(o)(o)dmi(_gj(_gjdmE(_ugj(_ugjdx+§(o)(o)dx]:+%.

0
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22 V. DEMENKO  MECHANICS OF MATERIALS 2020

Note, that 617 coefficient may be also calculated applying graphical method.

Substituting these coefficients into canonical equation is the following:

4 X1+@—O and Xl——625 kN.
3E| 3El

Note, that ""minus sign' means that actual direction of X, force is opposite

to its upwards original direction in equivalent system (see Fig. 11c).

After X4 finding the equivalent system becomes available for shear forces and
bending moments calculating. Let us preliminary determine the reactions RZ and

RE in equivalent system. Their original directions are shown on Fig. 11. Note, that
original direction of X; in equivalent system should be changed on opposite before

these calculating.

c+d Im@ 2a
ZMA:oz+x1b+M_qm(c+d)(7+bj_ g (b0)-I02, 22

* 1 c+d Gma _2a |
RCOI’ig —m (X1b+M qm (C d)( 5 +bj—TX?)——33.75 kN

(actual direction downwards).
2

2
_0__ * _Oma( ca ImC”~  dmd
> Mg =0= ch+M+RA0rig(b+c) > (3 +b+c)+ > S

2 2
R, L | xe-M+ qi(—+b+cj Gnc” , 9md” | _ 6625 kN
ig bt 2 \ 3 2 | 2

(actual direction upwards).
Checking:

* qa * _
SIF, =0= X1+ R, + Ry —0(C+0)=62.5+33.75+30-66.25-60=0.

Equations of internal forces in equivalent system are the following:
l-1: O<x<d

Q2 (X)=—tmx =—20x|, _, =0 _, =—20 kN,
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23

2
M)',(x) = qm2x =10x?

o 0|x=1 =+10 kNm.

IH-1l: O<x<c

3 (X)=—0m(x+d)+Rc, =—20(x+1)+33.75=

=(—20x+13.75)| _ =+13.75 _, =—26.25 kN,

MY ()= san (d 422G, -

act

x=0

_ (10x2 ~13.75x +1o)

=0, =225 KNm.

Due to QZ” (x) function changes its sign from "plus” to "minus" it is necessary

to find M 3',' (x) extremal value:

(a) extremum coordinate finding by equating to zero QZ” (x) function:

13'55 =+0.69m.

I (Xe)=(—20%, +13.75)=0 — Xg=+

. Il T - Il .
(b) calculating M y'max value substituting x, value into My (x) equation:

M (x) =M :(10xe2 —13.75x, +10):—3.34 kNm.

Ymax
Il —-Hl:; O<x<b

*

M (X) =R, —m(c+d)+ Xy =+36.25 kN,

31 (08, (6 M X (e S o]

=(12.5-36.25x) _ =125, ,=-60 kNm.
IV-IV: O<x<a

\% * OmX% 10 »
; (X)=Rcact—Qm(C+d)+X1+ > ~Rp,.. =| 5 X" =30 :_30|X:3:o KN,
a ) 3 x=0
\% * c+d
My (x):—RCact(c+b+x)+qm(c+d)(7+b+xj—M—
3
Xy (b+X)+ Ry x—m :(—9x3+30x—60j =—60),_,=0 kNm.
ig”  6a 9 - X=
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dm M q
m
T T T IEEEEEEEEREE
N C:A: D
b c d
4 B C D
_A_ b c :A: d
* M *
dm v K, I — 1 Rcon_gxl .
T T T T T T T HIT T
_A_ b . c C:A: d D
X — X X
z 111 X 'z Rzml ‘
m v Ry III M~ II R I q
m
T T T e B TTT I TR
_A_ b ¥ c C:A: d D
X X X
e
z z z
Ry Re
A B C D
x_A_ ?II * X, =1 ‘ :A: !
v . ! IS
z z z
36.25
0.(x),kN /m 13.75
|
|
i 20
30 26.25 !
GO |
7N %, =0.69
l<—|l
|
M,y (x), KNm ;
|
|
13.34
125W 10
225
Fig. 11
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The Q,(x) and My (x) graphs are represented on Fig. 11 (f, ).

General conclusion. Due to X; force is really the reaction in middle support, it

may be compared with the “abrupt” on the shear force graph, designed in result of
first solution applying three moment equation. This “abrupt” is equal to

(36.25+26.25=62.5kN). It’s coincidence with the value of X; force supports the
accuracy of this problem solution.

The “abrupt” on the My (x) graph in B-point is equal to external M value

10 kNm and internal moment in B section (equal to 22.5 kNm) is really unknown

M1 moment which has been found earlier in three moment equation.
Totally, the graphs of Q,(x) and M (x) shown on the Figs. 10 and 11 are

identical.
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