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LECTURE 25   Buckling of Columns (Part 1) 
Short version 

1   Stability of Equilibrium 

By stability is meant the property of a system to recover its original state after it 

has been displaced from the position of equilibrium. If a system does not possess this 

property, it is classified as unstable (see Fig. 1). 

                   

 

Fig. 1 

An ideal system is given a displacement from the position of equilibrium. If after 

removing the causes of the displacement the system returns to its initial state of 

equilibrium, the latter is considered stable. Otherwise it is unstable (see Fig. 2). 
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Fig. 2 

For the great majority of elastic systems such an approach to the analysis of 

stability (buckling) makes it possible to determine the values of external forces at 

which the stable position of equilibrium becomes unstable. Such forces are called 

critical loads and are regarded as limiting for a structure. 

It is evident, that 

cr yF A ,      (1) 

where  y  is the yield limit, A is the area of the bar. In buckling calculations the 

working load is assigned as the n-th fraction of the critical load. The quantity n is the 

stability factor of safety. Maximum working value of compressive force may be 

calculated as 

 crF
F

n
.      (2) 

2   The Euler’s Problem 

We shall begin the study of buckling of elastic systems with the simplest problem 

of equilibrium of a bar compressed by central forces F. 
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Fig. 3 

Suppose a compressed bar is deflected slightly for some reason. Consider the 

conditions under which an equilibrium of the bar with the deflected axis is possible. 

The co-ordinates of points of the elastic curve of the bar are denoted by x and z. 

For small deflections, as you know, Euler’s equation connects bending moments and 

deflections: 

( ) ( ) ( )    yEIz x M x Fz x ,      pr ,   (3) 

where  pr  – proportional limit. 

The bending of the bar occurs in the plane of minimum rigidity, and so the 

quantity I is understood to be the minimum moment of interia of the section: 

min ( ) ( )  EI z x Fz x , 

min

( ) ( )  
F

z x z x
EI

.     (4) 

Let’s denote the factor 

2

min


F

k
EI

.     (5) 

Equation (5) then becomes 

2( ) ( ) 0  z x k z x ,    (6) 

whence solution will be: 

1 2( ) sin cos z x C kx C kx . 

The constants 1C  and 2C  must be chosen so as to satisfy the boundary conditions: 

when 0x , 0z  and when x l , z l . From the first condition it follows that 

2 0C , and from the second condition 
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1sin 0C kl .     (7) 

This equation has two possible solutions: either 1 0C  or sin 0kl . In the first case the 

displacements z are identically zero for 1 2 0 C C , and so the bar maintains the 

straight-line configuration. This case is of no interest. 

In the second case 

kl n ,      (8) 

where n is arbitrary integer. 

Taking into account expression (5), we obtain 

2 2

min2




n
F EI

l
.     (9) 

This means that, in order for the bar to maintain a curvilinear configuration, the force F 

must take a definite value. This minimum force F is when 1n : 

2
min

2


cr

EI
F

l
.     (10) 

This force is termed the first critical force or Euler's buckling load. When 1n  

kl      (11) 

and the elastic curve equation becomes 

  1sin



x

z x C
l

.     (12) 

The bar bends a half-wave of a sine curve with a maximum deflection 1C . 

3   Effect of Boundary Conditions on the Critical Load 

In the range of small displacements a pin-ended bar buckles in a half-wave of a 

sine curve and the critical load is given by 

2
min

2
0


cr

EI
F

l
,     (13) 
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where 0l  is the length of a half-wave of a sine curve ( 0l l , see Fig. 4). 

 

Fig. 4 

If, for example, a bar is fixed at one end and free at the other, then 0 2l l . 

By generalizing the above formulas we can write the general expression for the 

critical load of a compressed bar 

2
min
2( )




cr

EI
F

l
,     (14) 

where   is the so-called length reduction factor, and 0 l l  – effective length. 

4   Critical Stresses. Conditions of the Euler’s Formula Applicability 

The critical stress is 

   

2 2 2
min min
2 2

 


 
  cr

cr
F EI Ei

A l A l
,   (15) 

where “i” denotes the radius of gyration of the section: 

2 
I

i
A

    or    
I

i
A

.    (16) 
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The quantity 
 l

i
 is denoted by  : 

min




l

i
     (17) 

and is called the actual slenderness ratio of the bar. Expression (15) for the critical 

stress then becomes 

2

2





cr

E
. 

As can be seen, the stress cr  increases as the slenderness ratio decreases. 

The Euler's formula is not applicable if the stress cr  reaches the 

proportionality limit pr : 

 cr pr . 

It means that 
2

2





 pr

E
. 

From this expression the limiting slenderness ratio is determined 

2

lim






p

E
. 

Because 

 cr p  

then 

lim  . 

For a slenderness ratio less than lim  Euler's formula is inapplicable. 


