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LECTURE 26   Buckling of Columns (Part 2). 
Inelastic Column Behavior 

Introduction 

Earlier we analyzed the behavior of columns when the material is stressed below 

the proportional limit. We began by considering an ideal column subjected to a 

centrally applied load (Euler buckling), and we arrived at the concept of a critical load 

crP . Unfortunately, only extremely slender columns remain elastic up to the critical 

load. More short columns behave inelastically. 

Thus, the maximum load that can be supported by inelastic column may be 

considerable less that the Euler’s load for that some column. 

Inelastic buckling is one of the practically important problems of mechanics of 

materials, that is, the buckling of columns when the proportional limit is exceeded. 

We will investigate the behavior of the same type of diagram as before, namely, a 

diagram of average compressive stress /P A  versus slenderness ratio /L i  (Fig. 1). 

Note that Euler's curve is shown on this diagram as curve ECD. This curve is valid 

only in the region CD where the stress is below the proportional limit  pr  of the 

material. Therefore, the part of the curve above the proportional limit is shown by a 

dashed line. 

The value of slenderness ratio above which Euler's curve is valid (it was called 

critical slenderness ratio cr ) was obtained as 

2
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.     (64) 

For structural steel with 250 pr MPa and 207E GPa the critical slenderness 

ratio is equal to 91. 

Above this value, an ideal column buckles elastically and the Euler load is 

valid. Below this value, the stress in the column exceeds the proportional limit and 

the column buckles inelastically. 
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As previously discussed, from Euler's 

curve we see that long columns with large 

slenderness ratios buckle at low values of the 

average compressive stress /P A . This 

condition cannot be improved by using a 

higher-strength material, because collapse 

results from instability of the column as a 

whole and not from failure of the material 

itself. The stress can only be raised by 

reducing the slenderness ratio /L i  or by 

using a material with higher modulus of 

elasticity E. 

When a compressed member is very 

short, it fails by yielding and crushing of the 

material, and no buckling or stability 

considerations are involved. In such a case, we can define an ultimate compressive 

stress ult  (for brittle materials) or yield stress  y  (for ductile materials) as the failure 

stress for the material. This stress establishes a strength limit for the column. Evidently, 

the strength limit is higher than the proportional limit. 

Between the regions of short and long columns, there is a range of intermediate 

slenderness ratios too small for elastic stability to govern and too large for strength 

considerations alone to govern. Such an intermediate-length column fails by inelastic 

buckling, which means that the maximum stresses are above the proportional limit 

when buckling occurs. Because the proportional limit is exceeded, the slope of the 

stress-strain curve for the material is less than the modulus of elasticity; hence the 

critical load for inelastic buckling is always less than the Euler load. 

Fig. 1 shows, that the maximum load-carrying capacity of columns in each of 

three categories is based upon quite different types of behavior. The maximum load-

carrying capacity of a particular column (as a function of its length) is represented by 

 

Fig. 1 Diagram of average compressive 

stress P A  versus slenderness ratio L i  . 

In Euler’s curve, the stress P A  is the actual 

maximum stress in buckling, i.e. critical 

stress which decreases if   increases 
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curve ABCD in Fig. 1. If the length is very small (region AB), the column fails by direct 

compression; if the column is longer (region BC) it fails by inelastic buckling; and if it 

is even longer (region CD), it fails by elastic buckling (that is, Euler buckling). Curve 

ABCD applies to columns with various support conditions if the length L in the 

slenderness ratio is replaced by the effective length eL . 

The results of load tests on columns are in good agreement with curve ABCD. 

When test results are plotted on the diagram, they generally form a band that lies just 

below this curve. Unfortunately, considerable scattering of test results is to be expected. 

To solve the problem of buckling, it is necessary to obtain the allowable stress for a 

column by dividing the maximum stress (from curve ABCD) by a given factor of 

safety, which has a value of about 2. It is variable (increasing as /L i  increases). Some 

typical formulas for allowable stresses which allow to design the columns will be given 

below. 

If a column is of intermediate length, the stress in the column will reach the 

proportional limit before buckling begins (curve BC in Fig. 1). To calculate critical 

loads in this intermediate range, a theory of inelastic buckling will be proposed. 

Three such theories will be discussed: the tangent-modulus theory, the reduced-

modulus theory, and the Shanley theory. These theories illustrate the general steps in 

development of science on buckling prevention. 

1   Historical Note 

Leonard Euler was the first who calculated the buckling load (in 1744). The final 

development of the theory was achieved by Shanley (in 1946). Several famous 

investigators in the field of mechanics contributed to this development. In 1845 the 

French engineer A.H.E. Lamarle pointed out that Euler's formula should be used only 

for slenderness ratios beyond a certain limit and that experimental data should be relied 

upon for columns with smaller ratios. Then, in 1889, another French engineer, 

A.G. Considere, published the results of the first tests on columns. He found that the 
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stresses on the concave side of the column increased with so called tangent modulus 

 tE d d , and the stresses on the convex side decreased with Young’s modulus E. 

Thus, he showed why the Euler formula was not applicable to inelastic buckling, and he 

stated that the effective modulus was between E and tE . Although he made no attempt 

to evaluate the effective modulus, Considere was responsible for beginning the 

reduced-modulus theory. 

In 1889, the German engineer F. Engesser suggested the tangent-modulus 

theory. He proposed, that tE  be substituted for E in Euler’s formula for the critical 

load. Later, in 1895, F. Engesser again presented the tangent-modulus theory, obviously 

without knowledge of Considere’s work. Today, the tangent modulus theory is known 

as the Engesser theory. 

Three months later, the Russian engineer F.S. Jasinsky pointed out that 

Engesser's tangent-modulus theory was incorrect, called attention to Considere’s work, 

and presented the reduced-modulus theory. He also stated that the reduced modulus 

could not be calculated theoretically. In response, F. Engesser acknowledged the error 

in the tangent-modulus approach and showed how to calculate the reduced modulus for 

any cross section. Thus, the reduced-modulus theory is also known as the Considere-

Engesser theory. 

F.S. Jasinsky proposed to connect the points B and C (Fig. 1) by straight line 

with the coefficients, calculated in result of experiments. The Jasinsky formula for 

critical force is the most simple: 

( ) crP A a b ,     (65) 

where a, b are the coefficients (see Table 1). Evidently, F. Jasinsky formula is correct 

only for the   ranged between 0  and cr . 
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Table 1 

Material  0,2 y   pr  a b cr  0  

 MPa   

Low carbon 

steel 
235 195 310 1.14 100 61 

High carbon 

steel 
353 300 440 1.64 85 52 

High 

strength 

stainless 

steel 

890 750 1100 6.65 58 30 

Aluminum 

alloy 
314 250 398 2.78 53 30 

Wood (pine) – – 28.7 0.19 70 – 

 

The reduced-modulus theory was also presented by the famous scientist T. von 

Karman in 1908 and 1910, apparently independently of the earlier investigations. He 

derived the formulas for reduced modulus rE  for both rectangular and idealized wide-

flange sections (that is, wide-flange sections without a web). 

The reduced-modulus theory was the accepted theory of inelastic buckling until 

1946, when the F.R. Shanley pointed out the logical paradoxes in both the tangent-

modulus and reduced-modulus theories. Shanley not only explained what was wrong 

with the generally accepted theories but also proposed his own theory that resolved the 

paradoxes. He also gave further analyses to support his earlier theory and gave results 

from tests on columns. Since that time, many other investigators have confirmed and 

expanded Shanley's concept. 

2   Tangent-Modulus Theory 

Let us consider an ideal, pinned-end column subjected to an axial force P 

(Fig. 2). The column is assumed to have a slenderness ratio   L i  that is less than the 
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critical slenderness ratio cr , and therefore the axial stress P a  reaches the 

proportional limit before the critical load is reached. 

The compressive stress-strain diagram for the material of the column is shown in 

Fig. 3. The proportional limit of the material is indicated as  pr , and the actual stress 

 A  in the column (equal to /P A) is represented by point A (which is above the 

proportional limit). If the load is increased, so that a small increase in stress occurs, the 

relationship between the increment of stress and the corresponding increment of strain 

is given by the slope of the stress-strain diagram at point A. This slope, equal to the 

slope of the tangent line at A, is called the tangent modulus and is denoted by tE ; thus, 




t

d
E

d
.     (66) 

It is important to note that the tangent modulus decreases as the stress increases 

beyond the proportional limit. When the stress is below the proportional limit, the 

tangent modulus is the same as the ordinary elastic modulus E. 

 

 

Fig. 2   Ideal column of intermediate length 

that buckles inelastically 

Fig. 3   Compression stress-strain diagram for 

the material of the column shown in Fig. 2 
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According to the tangent-modulus theory of inelastic buckling, the column 

shown in Fig. 2a remains straight until the inelastic critical load tP  is reached. As 

increments of load are imposed, the column displays a slight curvature, i.e. the column 

undergoes a small lateral deflection (Fig. 2b). The resulting bending stresses   are 

superimposed upon the axial compressive stresses  A cr , associated with the 

attainment of critical load tP  (Fig. 4). Since the column starts bending from a straight 

position, the initial bending stresses   represent only a small increment of stress. 

Therefore, the relationship between the bending stresses   and the change in strain 

  is therefore   tE . Here tE  is tangent modulus of the material that is, 

 tE d d . 

Since the strains vary linearly across 

the cross section of the column, the initial 

bending stresses also vary linearly, and 

therefore the expressions for curvature are 

the same as those for linearly elastic 

bending except that tE  replaces E: 

2

2

1


  

t

d v M
k

E Idx
. (67) 

Because the bending moment 

 M Pv  (see Fig. 2b), the differential equation of the deflection curve is 

0 tE Iv'' Pv      (68) 

This equation has the same form as the equation for elastic buckling except that 

tE  appears in place of E. Therefore, we can solve the equation in the same manner as 

before and obtain the following equation for the tangent-modulus load: 

2

2


 t

t
E I

P
L

.      (69) 

 

Fig. 4   Stress distribution in an intermediate 

column. The increment of stress   is due to 

bending; cr  represents the value of stress 

associated with the attainment of critical load 

tP . The distribution of fibers strain will display 

the identical pattern. 
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This load represents the critical load for the column according to the tangent-

modulus theory. The corresponding critical stress may be expressed by the generalized 

Euler’s buckling formula, or the tangent modulus formula: 

 

2

2


   t t

cr t
P E

A L i
.    (70) 

Because the tangent modulus tE  corresponding to the given stress in the 

compression stress-strain diagrams, we will obtain the tangent-modulus load tP  using 

in iterative procedure. We begin by estimating the value of tP . This trial value, call it 

1P  should be slightly larger than  pr A , which is the axial load when the stress just 

reaches the proportional limit. Knowing 1P , we can calculate the corresponding axial 

stress 1 1  P A  and determine the tangent modulus tE  from the stress-strain diagram. 

Next, we use Eq. 69 to obtain a second estimate of tP , called as 2P . If 2P  is very close 

to 1P , we may accept the load 2P  as the tangent-modulus load. However, it is more 

likely that additional cycles of iteration will be required until we reach a load that is in 

close agreement with the preceding trial load. This value is resultant tangent-modulus 

load. Tangent-modulus critical stress  t  range for intermediate columns is represented 

by the curve BC in Fig. 1. 

It should be noted that Eq. (70) 

determines the ultimate stresses not the 

working stresses. It is thus necessary to 

divide the right side of each formula by an 

appropriate factor of safety, often 2 to 3, 

depending upon the material, in order to 

obtain the allowable values. 

A diagram showing how the critical 

stress  t  varies with the slenderness ratio is 

given in Fig. 5 for a typical metal column 

with pinned ends. This curve is above the 

proportional limit and below Euler's curve. 

 

Fig. 5   Diagram of critical stress versus 

slenderness ratio  
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The tangent-modulus formulas may be used for columns with various support 

conditions by using the effective length eL  in place of the actual length L. 

3   Reduced-Modulus Theory (Double-Modulus Theory) 

The tangent-modulus theory is simple in use. But, it does not account for 

complete behavior of the column. Let us consider again the column shown in Fig. 2a. 

When this column first departs from the straight position (Fig. 2b), bending stresses are 

added to the existing compressive stresses /P A . These additional stresses are 

compressive on the concave side of the column and tensile on the convex side. 

Therefore, the compressive stresses in the column become larger on the concave side 

and smaller on the convex side. 

Let us suppose that the axial stress /P A  is represented by point A on the stress-

strain curve (Fig. 3). On the concave side of the column (where the compressive stress 

is increased), the material follows the tangent modulus tE . However, on the convex 

side (where the compressive stress is decreased), the material follows the unloading 

line AB the stress-strain diagram on Fig. 3. This line is parallel to the initial linear part 

of the diagram, and therefore its slope is equal to the elastic modulus E. Thus, at the 

onset of bending, the column behaves as if it were made of two different materials, a 

material of modulus tE  on the concave side and a material of modulus E on the 

convex side. 

A bending analysis of such a column can be made using the bending theories for 

a beam of two materials. The results of such analyses show that the column bends as 

though the material had a modulus of elasticity between the values of E and tE . This 

"effective modulus" is known as the reduced modulus rE , and its value depends not 

only upon the magnitude of the stress (because tE  depends upon the magnitude of the 

stress) but also upon the shape of the cross section of the column. Thus, the reduced 

modulus rE  is more difficult to determine than is the tangent modulus tE . In the case 

of a column having a rectangular cross section, the equation for the reduced modulus is 

 
2

4




t
r

t

EE
E

E E

.    (71) 
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For a wide-flange beam with the areas of the webs ignored, the reduced modulus 

for bending about the strong axis is 

2




t
r

t

EE
E

E E
.    (72) 

Since the reduced modulus represents an effective modulus that governs the 

bending of the column when it first departs from the straight position, we can formulate 

a fundamental principles of reduced-modulus theory of inelastic buckling in the same 

manner as for the tangent-modulus theory. We will begin with an equation for the 

curvature and then we will write the differential equation of the deflection curve. These 

equations are the same as Eqs. (67) and (68) except that rE  appears instead of tE . 

Thus, we arrive at the following equation for the reduced-modulus load: 

2

2


 r

r
E I

P
L

.    (73) 

The corresponding equation for the critical stress is 

 

2 2

2 2

 



 r r

r
E E

L i
.    (74) 

To find the reduced-modulus load rP , we again must use an iterative procedure, 

because rE  depends upon tE . The critical stress according to the reduced-modulus 

theory is shown in Fig. 5. It is important to note that the curve for r  is above that for 

t , because rE  is always greater than tE . 

The reduced-modulus theory is difficult to use in practice because Ошибка! 

Объект не может быть создан из кодов полей редактирования. depends upon the 

shape of the cross section as well as the stress-strain curve and must be evaluated for 

each particular column. 

4   Shanley Theory 
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An understanding of the tangent-modulus and reduced-modulus theories is 

necessary in order to consider a more complete theory. It was developed by 

F.R. Shanley in 1946 and is called the Shanley theory of inelastic buckling. 

The Shanley theory recognizes that it is not possible for a column to buckle 

inelastically in a manner that is analogous to Euler buckling. In Euler buckling, a 

critical load is reached at which the column is in neutral equilibrium, represented by 

a horizontal line on the load-deflection diagram (Fig. 6). Neither the tangent-modulus 

load tP  nor the reduced-modulus load rP  can represent this type of behavior. In both 

cases, we are led to a contradiction if we try to associate the load with a condition of 

neutral equilibrium. 

Instead of neutral equilibrium, wherein a deflected shape suddenly becomes 

possible with no change in load, we must think of a column that has an ever-increasing 

axial load. When the load reaches the tangent-modulus load (which is less than the 

reduced-modulus load), bending can begin only if the load continues to increase. Under 

these conditions, bending occurs simultaneously with an increase in load, resulting in a 

decrease in strain on the convex side of the column. Thus, the effective modulus of the 

material throughout the cross section becomes greater than tE , and therefore an 

increase in load is possible. However, the effective modulus is not as great as rE , 

because rE  is based upon full strain reversal on the convex side of the column. In other 

words, rE  is based upon the amount of strain reversal that exists if the column bends 

without a change in the axial force, whereas the presence of an increasing axial force 

means that the reduction in strain is not as great. 
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Thus, instead of neutral equilibrium, 

where the relationship between load and 

deflection is undefined, we consider a definite 

relationship between each value of the load 

and the corresponding deflection. This 

behavior is shown by the curve labeled 

"Shanley theory" in Fig. 6. Note that buckling 

begins at the tangent-modulus load; then the 

load increases but does not reach the 

reduced-modulus load until the deflection 

becomes infinitely large (theoretically). 

However, other effects become important as the deflection increases, and in reality the 

curve eventually goes downward, as shown by the dashed line. 

The Shanley concept of inelastic buckling has been verified by numerous 

investigators and by many tests and is now fully accepted. However, the maximum load 

attained by real columns (see the dashed curve trending downward in Fig. 6) is only 

slightly above the tangent-modulus load tP . In addition, the tangent-modulus load is 

very simple to calculate. Therefore, for practical purposes it is reasonable to adopt the 

tangent-modulus load as the critical load for inelastic buckling of columns. 

5   Examples 

 

Fig. 6   Load-deflection diagram for elastic 

and inelastic buckling  
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Example 1   A 2-meters-long Douglas fir bar of 5b cm 

by 10h cm rectangular cross section, pivoted at both 

ends, is subjected to an axial compressive load (see 

Figure). For 12.5E GPa, calculate (1) the slenderness 

ratio and (2) the allowable load, using a factor of safety of 

1.5n . 

Solution   The minimum radius of gyration mini  of the 

cross section is 

3
min

min
12 2 3

   y
I hb b

i i
A bh

. 

(1) The lowest value of i is obtained when the centroidal axis is parallel to the longer 

side of the rectangle, i.e. y-axis. We thus have 10h cm and 5b cm so that 

min 5/ 2 3 1.45  yi i cm. Then maximum actual slenderness ratio 

2 2
max min/ 2 10 /1.45 10 138       y L i . 

(2) The Euler buckling load is 

 

   
 

2 9 2 2
2

2 2
min

12.5 10 5 10 10 10
3.24

/ 138


   

  cr
EA

P
L i

kN. 

The largest load the column can support is therefore all 3.24 1.5 2.16 P kN. 
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Example 2   A long, slender column ABC is 

pin-supported at the ends and compressed by 

an axial load P (see Figure). Lateral support 

is provided at the midpoint B in the plane of 

the figure. However, lateral support 

perpendicular to the plane of the figure is 

provided only at the ends. The column is 

constructed of a steel wide-flange section 

8 28W  (see Assortment of steel products) 

having modulus of elasticity 200E GPa 

and proportional limit 290 pr MPa. The 

total length of the column is 7.6L m. 

Determine the allowable load allP  using a factor of safety 2.0n  with respect to Euler 

buckling of the column. 

Solution   Because of the manner in which it is supported, this column may buckle in 

either of the two principal planes of bending. First, it may buckle in the plane of the 

figure, in which case the distance between lateral supports is / 2 3.8L m and bending 

occurs about axis y. Second, it may buckle perpendicular to the plane of the figure with 

bending about axis x. Because the only lateral support in this direction is at the ends, 

the distance between lateral supports is 7.6L m. 

Column properties. From Assortment of steel products, we obtain the following 

moments of inertia and cross-sectional area for a 8 28W  column: 

4 8 498.0 in. 4079 10 m  xI ; 4 8 421.7 in. 903 10 m  yI , 

2 4 28.25 in. 53.23 10 m  A . 

Checking the Euler’s formula applicability. As previously mentioned, the Euler’s 

curve is valid only when critical stress is less than the proportional limit of the material, 

because the equations were derived using Hooke’s law. It means, that the Euler’s curve 

 

Figure.   Euler’s buckling of a slender column 
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is limited by the horizontal line at the proportional limit of the steel ( 290 pr MPa), 

and an applicability of the Euler’s formula must be checked after finding the critical 

stress. 

The same checking is in comparison of limiting and actual slenderness ratios. In 

this example, limiting slenderness ratio 

11 6
lim 2 10 290 10 82.6       prE . Actual maximum slenderness ratio 

2
max min 2 7.6 (1.62) 10 469     L i L i . Because max min   the Euler’s 

formula is applicable. 

Critical loads. If the column buckles in the plane of the figure, the critical load is 

 

  
 

2 11 -8 42 2

2 2 2

4 2 10  Pa 903 10  m4
1233

/ 2 7.6 m

   
   

y y
cr

EI EI
P

LL
kN. 

If the column buckles perpendicular to the plane of the figure, the critical load is 

  
 

2 11 -8 4
2

2 2

2 10  Pa 4079 10  m
1393

7.6 m

  
  x

cr
EI

P
L

kN. 

Therefore, the critical load for the column (the smaller of the two preceding 

values) is: 

1233crP kN 

and buckling occurs in the plane of the figure. 

Critical stresses. Since the calculations for the critical loads are valid only if the 

material follows Hooke's law, we need to verify that the critical stresses do not exceed 

the proportional limit of the material. In the case of the larger critical load, we obtain 

the following critical stress: 

3

4 2

1393 10 N
267

53.23 10 m





  



cr
cr

P

A
MPa. 
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Since this stress is less than the proportional limit ( pr 290  MPa), both critical 

load calculations are valid. 

Allowable load. The allowable axial load for the column, based on Euler 

buckling and the factor of safety 2n , is  

1233 kN
616.5

2.0
  cr

all
P

P
n

kN 

in which 2.0n  is the factor of safety. 

Example 3   A 76 by 64 by 6.4-mm steel angle 

(see Assortment of steel products) (see Figure) is 

to serve as a pin-ended column to support a 

40 kN load with a safety factor 2n . Assuming 

that the proportional limit 240 pr MPa and 

210E GPa, determine the maximum length of 

the member. 

Solution   From (see Assortment of steel 

products) we find that the smallest radius of gyration for the principal axis (z) of the 

angle cross section is min 13.4i mm; the area is 850mm
2
. In this case, the critical load 

becomes 2(40) 80 crP kN. Thus 3 680 10 /(850 10 ) 94.1    cr MPa and we have 

 cr pr . Based upon the assumption that Euler's formula is applicable, we have 

 

2

2
min/


 cr

E

L i
    or    

 
 

2 9

6
2

210 10
94.1 10

/ 0.0134

 
 

L
, 

from which 1.25L m. Maximum actual slenderness ratio 

max min 1.25 0.0134 93.3   L i , is well into the Euler range, the assumption is 

valid. 

 

Figure.   Nonequileg cross-section with 

z-z minimum principal axis of inertia 
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Example 4   Calculate the critical load of a wooden past 

( 10E GPa, 8 pr MPa) of 3 by 20 mm rectangular 

cross section and the length of 0.3 m. Estimate the change 

in critical load if the length of the post is decreased: 1) 

two times; 2) four times. Assume that the supports provide 

pinned-end conditions. 

Solution   Past properties. The minimum radius of 

gyration mini  of the cross section is 

3

min 0.867
12 2 3

    
y

y

I hb b
i i

A hb
mm. Then, 

maximum actual slenderness ratio  3
max 0.3 0.867 10 346      y yL i . 

Checking the Euler’s formula applicability for given yardstick. 

Limiting slenderness ratio for wood   9 6
lim 10 10 8 10 111       prE . 

Because  max lim 346 111   , the Euler’s formula is applicable. 

Critical load for given length 0.3L m. 

2 2 2 3
min

2 2 212

  
   z

cr
EI EI Ehb

P
L L L

 

   
 

3
2 11 3 30.1 10 Pa 20 10 m 3 10 m

14.8
12 0.3m

    
  N. 

Checking the Euler’s formula applicability for the column of twice decreased length 

1 2 0.15 L L m. 

Evidently, limiting slenderness ratio remain unchanged: lim 111  . Maximum actual 

slenderness ratio becomes  1

3
max 1 0.15 0.867 10 173      y yL i . Because 

 max1 lim 173 111   , the Euler’s formula remains applicable. Critical load for the 

yardstick with twice decreased length 1 0.15L m, 1 4 59.2 cr crP P N. 
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Checking the Euler’s formula applicability for the column of fourth decreased length 

2 4 0.075 L L m. 

Limiting slenderness ratio remains unchanged: lim 111  . Maximum actual 

slenderness ratio becomes  3
max2 2 0.075 0.867 10 86.5      y yL i . 

Because  max2 lim 86.5 111   , the Euler’s formula becomes inapplicable and to 

calculate critical load for this intermediate column it is necessary to apply nonelastic 

analysis. 

Example 5   A 102 by 76 by 12.7-mm steel 

angle (see Assortment of steel products) is 

used as a pin-ended column to support 60 kN 

load. Assuming that the proportional limit 

240 pr MPa and 210E GPa calculate the 

critical stress cr , and the critical load crP  if 

the length 2L m. 

Solution   The column properties. From see 

Assortment of steel products, we find that the 

smallest radius of gyration for the principal axis (z) of this angle cross section is 

min 16.2i mm; the area is 2100 mm
2
. Maximum actual slenderness ratio 

 3
max 2 16.2 10 123.5      z zL i . 

Checking the Euler’s formula applicability. 

Limiting slenderness ratio for the steel 

   9 6
lim 210 10 240 10 91.7       prE . 

Because  max lim 123.5 91.7   , the Euler’s formula is applicable. 

Critical stress for given column. 

 

Figure.   Nonequileg cross-section with z-z 

minimum principal axis of inertia  
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 2 9
2

2 2

210 10
135.8

123.5







  cr

E
MPa. 

Evidently, that because buckling is within elasticity limits,  135.8 240  cr pr . 

Critical load.   6 6 2135.8 10 Pa 2100 10 m 285.2     cr crP A kN. 

Example 6   The platform (see Figure) is supported by a row of aluminum pipe 

columns having length 3.25L m and outer diameter 100d mm. The bases of the 

columns are fixed in concrete footings and the tops of the columns are supported 

laterally by the platform. The columns are being designed to support compressive loads 

100P kN. Determine the minimum required thickness t of the columns, if a factor of 

safety 3n  is required with respect to Euler buckling. Use for the aluminum, 

72E GPa for the modulus of elasticity and use 480 pr MPa for the proportional 

limit. 

 

Solution   Because of the manner in which 

the columns are constructed, we will 

simulate each column as a fixed-pinned 

column (see Figure). Therefore, the critical 

load is 

2

2

2.046
cr

EI
P

L
,     (a) 

in which I is the moment of inertia of the tubular cross section: 

 
44 2

64

    
  

I d d t .     (b) 

 

Figure.   A platform supported by pipe columns 
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Substituting 100d mm (or 0.1 m), we get 

   
4 4

0.1 m 0.1 m 2
64

    
  

I t ,    (c) 

in which t is expressed in meters. 

Calculation of thickness of the columns. Since the load per column is 100 kN and 

the factor of safety is 3, each column must be designed for the following critical load: 

3(100 kN) 300  crP nP kN. 

Substituting this value for crP  in Eq. (a), and also replacing I with its expression 

from Eq. (c), we obtain 

 
 

   

2 9
4 4

2

2.046 72 10 Pa
300,000 N 0.1 m 0 1m 2

643.25 m

 
        

.  t . 

After multiplying and dividing, the preceding equation simplifies to 

   
4 46 444.40 10  m 0.1 m 0.1 m 2    t , 

or 

   
4 4 6 4 6 40.1 m 2 0.1 m 44.40 10  m 55.60 10  m      t , 

from which we obtain 

0.1 m 2 0.08635 t m    and    0.006825t m. 

Therefore, the minimum required thickness of the column to meet the specified 

conditions is 

min 6.83t mm. 

Note, that Euler’s formula was used in the calculation unsubstantially. That’s 

why, knowing the diameter and thickness of the column, we must now calculate its 

moment of inertia, cross-sectional area, and radius of gyration to find actual slenderness 

ratio and compare it with limiting slenderness ratio of column material. Using the 

minimum thickness of 6.83 mm, we obtain 
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 
44 62 2.18 10

64

      
  

I d d t mm
4
, 

 
22 2 1999

4

     
  

A d d t mm2,    33.0 
I

i
A

mm. 

Due to the assumption of pinned supports, the actual slenderness ratio   L i  of 

the column is approximately 98. Critical slenderness ratio 

 9 63.14 72 10 480 10 38.3      cr prE . Because  98 38.3  cr  the 

application of the Euler’s formula is valid. 

At the same time the critical stress in the column must be less than the 

proportional limit of the aluminum if the formula for the critical load (Eq. a) is to be 

valid. The critical stress is 

2

300 kN
150

1999 mm
   cr

cr
P

A
MPa, 

which is less than the proportional limit (480 MPa). Therefore, our calculation for the 

critical load using Euler buckling theory is satisfactory. 

Example 7   Rigidly fixed and cable-supported rectangular steel bar AB in the structure 

(see Figure), is constructed of a 50-mm by 75-mm section, for which 207E GPa and 

250 pr MPa. What is the buckling load of the steel bar AB, if its length is 3.0 m. 

Solution   From the equations of static 

equilibrium, the axial compressed force 

expressed in terms of W is found to be 

4 3P W . 

Geometrical properties of the cross 

section: 

31
(75)(50) 781250

12
 yI mm

4
, 

31
(50)(75) 175782

12
 zI mm

4
, 

 

Figure.    Cable-supported rectangular steel 

bar 
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(50)(75) 3500 A mm
2
, 

and 

14.94 
y

y

I
i

A
mm,    22.41 z

z
I

i
A

mm. 

Buckling in vertical xy plane. Due to the assumption of pinned support in B point, the 

effective length of the column with respect to buckling in vertical xy plane is 

0.7eL L , therefore 

3

0.7 3.0
93.7

22.41 10





  



e
z

z

L

i
. 

The Euler formula is applicable in this range, because  

9 6207 10 250 10 90.35       cr prE ,    i.e.     93.7 90.35  z cr .  

Hence 

 

  
 

2 9 6
2

2 2

207 10 3500 10 4
813.6 kN

393.7





 
   cr

z

EA
P W . 

Using this result, 3 4 3 813.6 4 610.2   crW P kN. 

Simultaneously,    3 6813.6 10 3500 10 232.5     cr crP A MPa. 

The result is within the Euler’s formula limitations, because (232.5 250)  cr pr . 

The Euler’s formula is valid. 

Buckling in horizontal xz plane. There are no any supports in point B in xz plane. 

Simultaneously, point A remains rigidly fixed. Therefore Ошибка! Объект не может быть 

создан из кодов полей редактирования.. Then 

3

2 3.0
401.6

14.94 10





  



e
y

y

L

i
. 

As previously,  401.6 90.35  y cr . 

The buckling load is 
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 

  
 

2 9 6
2

2 2

207 10 3500 10 4
44.3 kN

3401.6





 
   cr

y

EA
P W . 

From this 3 4 3 44.3 4 33.2   crW P kN. 

Simultaneously    3 644.3 10 3500 10 12.7     cr crP A MPa. 

As previously, the result is within the Euler’s formula limitations, because 

 12.7 250  cr pr . 

The column will obviously fail by lateral buckling when load W exceeds 

33.2 kN. Observe that the critical stress is only equal to 12.7 MPa. This compared with 

the proportional limit 250 MPa demonstrates the significance of buckling analysis in 

predicting the safe working load. 

Example 8   A pipe of 76-mm outside diameter and 3-mm thickness is used as a 

column of 2-m effective length. Determine the axial buckling load for a material with a 

stress-strain curve approximated as in the figure. 

Solution   For a tube cross section, geometric 

properties are 

 2 276 70 688
4


  A mm

2
, 

2 21
76 70 25.8

4
  i mm. 

Thus, actual slenderness ratio 77.5  L i  

and the tangent modulus formula is 

   

2 2

2 2
0.001643

77.5/

 
   t t

cr t

e

E E
E

L i
. 

Because the value of tE  is different in every range, we must employ a trial-and-error 

procedure. 

For the initial (elastic) range, the slope is 100 tE E GPa and the last equation 

yields 
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 90.001643 100 10 164.3   cr MPa. 

As observed from the Figure, E is not valid above 100 MPa. For the second portion of 

the stress-strain curve, 1 75 GPatE  and therefore 

 90.001643 75 10 123.2   cr MPa. 

This is the critical stress at buckling because the value of 1tE  lies between 100 and 

250 MPa. The solution is therefore 

  6 6123.2 10 688 10 84.8     cr crP A kN. 

Example 9   Calculate the critical load for the pin-ended aluminum pipe column 

( 70E GPa for the modulus of elasticity and 250 pr MPa for the proportional 

limit) having length 1.5L  and outer diameter 1 100d mm and inner diameter 

2 80d mm. 

Solution   1. Column properties. 

For a tube cross section, we have 

   2 2 2 2
1 2 100 80 2826

4 4

 
    A d d mm

2
, 

 
 

4 4
1 2 2 2 2 2

1 22 2
1 2

1 1 1
100 80 32.0

4 4 4


      



d dI
i d d

A d d
mm. 

The actual slenderness ratio  31.5 32.0 10 46.9    L i . 

2. Limiting slenderness ratio for given aluminum alloy. 

   9 6
lim 3.14 70 10 250 10 52.5      prE . 

3. Checking the Euler’s formula applicability. 
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Evidently,  min 46.9 52.5   , i.e. the Euler’s formula is inapplicable, and to 

calculate the critical load for this intermediate column it is necessary to apply non-

elastic analysis, in particular, the Jasinsky formula. 

4. Non-elastic analysis of the tube buckling using Jasinsky formula   crP A a b . 

From the Table 1 398a MPa, Ошибка! Объект не может быть создан из кодов полей 

редактирования.MPa, and 

  6 62826 10 398 2.78 46.9 10 756.2    crP kN. 

5. Discussion of result. 

For the column under consideration critical stresses 

    6398 2.78 46.9 10 267.6      cr a b MPa. 

Evidently,  267.6 250  cr pr , and application of the Euler’s formula is incorrect. 

It gives 

  2 9 6
2

2 2

70 10 2826 10
886.7

46.9





 
  cr

EA
P kN. 

It is important to note, that 756.2 886.7 kN. It means that actual critical force is less 

than the one predicted by the Euler’s formula. The history of engineering knows many 

fractures of machines and structures caused by excess critical stresses not predicted by 

elastic analysis and by application of Euler’s formula in solution of buckling problem. 

 


