V. DEMENKO  MECHANICS OF MATERIALS 2020 1
LECTURE 27 Stresses in Symmetrical Shells

1 Characteristic features of shells

Most elements of engineering structures to be designed may be reduced to the
design schemes of a rod or a shell.

As previously mentioned, by a rod is meant any body one of whose dimensions
(Iength) is considerably greater than the other two.

By a shell is meant a body one of whose dimensions (thickness) is considerably

less than the other two. The examples of shells are shown in Fig. 1.

Fig. 1

The locus of points equidistant from both surfaces of a shell is called the middle
surface. If the middle surface of a shell is a plane, such a shell is called a plate.
A shell is thin-walled if
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where & is the thickness of a shell, Ry, is the radius.

Symmetrical shells are those whose middle surface represents a surface of revolution.
It will be assumed that the load acting on such a shell also possesses the
properties of axial symmetry. The analysis of such shells is greatly simplified. The
stress-analysis problem for shell of revolution is simplest to solve when it can be
assumed that the stresses developed in the shell are uniformly distributed through its

thickness, and so the shell undergoes no bending.

2 Determination of stresses in symmetrical shells. Laplace's equation

Consider a symmetrical shell of thickness o :

Fig. 2
Let R, denote the radius of curvature of the meridian arc of the middle surface and Ry

the second principal radius, i.e. the radius of curvature of the normal section
perpendicular to the meridian arc.

By two pairs of meridional and normal conical sections (Fig. 2) we isolate from
the shell the element dS;, dS, represented in Fig. 2. We shall assume that the faces of

the element are acted on by stresses o, and oy. The first stress oy, is called the

meridional stress, the vector of this stress is directed along the meridian arc. The

second stress o is called the circumferential stress.
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The stresses o, and oy multiplied by the appropriate areas of the faces of the

element give the forces o,,,0dS, and c»odS; shown in Fig. 3.

n

Fig. 3
The element is also subjected to the external normal pressure p. By projecting all

forces on the normal, we obtain

pdS1dS, — 20,,0dS5 sin d7(p —200dS; sin d—f =0,

since
sind—(pzd—(o, sind—ezd—e,
2 2 2 2
pd$1dS,; — 01,6dS, sindg — opodS;sindd =0,
since

ds
dS, = Ryd0 — df = %0,

dS; = Rydp > dp =81/
m

we have
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ds, ds,

pd81d82 - Gm5d82 _— - 0'95d81— =0,
Rm Ro
consequently
Om % _P 2)
Rm Rg o

This relation is known as Laplace's equation.

For the element shown in Fig. 2 it is possible to derive one more equation by
projecting all forces on the direction of the axis of the shell. It is more convenient,
however, to do this for a part of the shell cut off by a conical normal section. Hence we

can determine the meridional stress oy,. Thus, the stresses o, and oy in a shell are

determined from the equations of equilibrium.
The third principal stress, the stress of pressure between the layers of the shell, is
assumed to be small and the state of stress of the shell is considered to be biaxial.
Example 1 A spherical shell of radius R and thickness & is subjected to internal

pressure p (Fig. 4). Determine the stresses developed in the shell.

7 L;/ \
/XA

For a spherical shell

Fig. 4

Because of complete symmetry

O'mZO'g.
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Laplace's formula (2) gives

m [Z] 25 .
The state of stress is biaxial
_ ___PR
(71 02 —25 .

The minimum stress o3 is assumed to be zero. By the third strength theory,

condition of strength is

Example 2 A cylindrical vessel is subjected to internal pressure p. The radius of
the cylinder is R, its thickness is ¢ . Determine the stresses.
We cut off part of the cylinder by a transverse section (Fig. 5) and derive an

equation of equilibrium for it

R

Rl -
I

X

Fig. 5

27Roéoy = 7R? P—>om= PR

26
For a cylinder R, =, Ry =R. Hence from Laplace's formula we find

om,% _P_,, PR

i.e. the circumferential stress is twice the meridional stress.
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The element A isolated from the cylindrical shell is in the state of biaxial stress

0120'9,
O'ZZO'm,
03=—p=0.

The equivalent stress is

R
O'elal :o'1—0'3=%£[a].

Example 3 A conical vessel of thickness ¢ is filled with a fluid of specific

weight ». Determine the stresses in the vessel (Fig. 6).

Fig. 6
We cut off a lower portion of the conical shell by a normal conical section. It is
well known, that the pressure is equal to the weight of the fluid in the volume over the

cut off portion of the shell:

p(z)=(H-2)y.
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The radius Ry, =;

OA= - ; Rg(z)zﬁtga.
cosa cosa
By Laplace's formula
H -z
om,o0_P , L - P@OR@_(H-2) z .
Rm Rgp o o o cosa

Due to this function is parabolic, it is necessary to determine its extremal value:

doy nMya
99 _o M2 4 2 )-0>  z=-—.
dz 5cosa( e) €

: : : : H
Maximum stress o9, ., OCCUrs atinner points of the conical shell at z= e The graph

of this stress distribution is shown on Fig. 8 (left). OB o value is determined by the
formula:

o, —1 M9 2
Omax 4 5cosa

Let us determine o,(z) by projecting all forces on vertical z axes taking into

account that the weight of situated below conical part is:
1 .2
V. (2) :§7ZR (z)z and R(z2)=ztgc.

Corresponding part of the shell is shown on Fig. 7. The equation of equilibrium is
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z} R(2) g
B og(2) G m(2)

Hl 1 p(2) ZGM(Z) % ) ) »

| jif (562 H/4
® G(Z): 5 I 1 sz :Gmmax

Om

! H/2

Fig. 7 Fig. 8

> P, =0=27R(z)60m(z)cosa =(H - z)mRz(z) + %ERZ(Z)Z;/,

260 (2)cosa = HyR(z) — zyR(z) + % R(z)zy =HyR(z) - % zyR(z) =

:ytga(HZ—gzzj,

Y\ga 2 2
Z) = Hz—-——z°|,
om(2) 25cosa[ 3 }

To calculate this stress maximum value, let us determine its derivative and equate to

ZEero.

dom _ g (H—ﬂzej=0, 7= 2H.
dz 20C0Sx 3 4

: : , : 3
The maximum stress o, occurs in the section of the conical shell at z :ZH t's

maximum value is determined by the formula:

3 yMga 2
m = — H .
max 16 S cosa
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Graph of meridian stress distribution is shown on Fig. 8 (right).

Therefore, two potentially critical cross sections must be considered to estimate

this shell strength:

section I-1 z:i
2
1 Mga |2 1 Mg 2
of =0 = H ' (o) = H .
%~ % Omax ~ 4 Scosa ™ 6 5cosa
section I1-11 z:ﬁ
—E&HZ om _EMHZ.

O, = = —
% ~16 Scosa 2 Mmax 16 Scosa

Applying I11 strength theory, midsection is critical, since

o1 =0y ZEMHZ’
max 4 5coSa

_1 Mg 2
™ 6s5cosa

09 =0, o3=0

S 1 1ga H2.

9 4 65c0sa
Example 4 Compare the strength two cylindrical pressure vessels of the same
dimensions under hydraulic pressure with specific weight » but with different support

conditions.
1. Pressure vessel 1. It is shown on Fig. 9. Evidently, that meridian and circumferential
stresses will be the functions of z coordinate due to hydraulic pressure dependence on

the depths of liquid. Stress element is shown on Fig. 10. oy»(z) will be found applying

Laplace formula:

@), oo _p@ |, o PER_yR
00 R o 1) o

(H) =2,

O'Q(O)ZO, Oy S5
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This linear function is shown on Fig. 11 (left).

Idls e
y l __l l H
P
e

Fig. 9

Gg (Z) Gm(z)

vHR
0

Fig. 11 Fig. 12

Meridian stress o,(z) we will calculate, applying equation of equilibrium for the low

part of the vessel shown on Fig. 12:

S'F, =0= p(2)7R? - y22R? — 61y (2)27RS =
= 7/Z7Z'R2 — )/Z7Z'R2 —om(2)27R6 — o(2) =0.
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In result, meridian stresses are zero for this type of boundary conditions, and bottom
section is critical.
Due to uniaxial stress state in an arbitrary point of the shell we will write following

condition of strength:

-_ 6 1 (2)
- »j—_.__p(Z)_
LU | @
P

G (2)

l
- )

G,z

Fig. 13 Fig. 14

In this case, Laplace formula will lead to the same formula for oy(z):

op(2) = p(;)R _ y;R |
Gg(O):O, G@(H) :ﬂ_

o

This linear function is shown on Fig. 15 (left).

Meridional stress o, (z) we will calculate, applying equation of equilibrium for upper

part of the vessel show on Fig. 16:
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Ge (Z) Gm(Z) Z A
G m(2) »(2) S m(2)
Tl RERNRRE 1
O ___ __—_ _ H-z
: R ”G(Z)
YHR YHR
5 25
Fig. 15 Fig. 16

Y F(2) =0=-p(2)7R% - y(H — 2)7R? + o1 (2)27RS =
= —7/Z7zR2 + 7/Z7rR2 —yH 7R? + om(2)27R6 .

HR
(=5

yHR

om(0)=om(H)= 25 "

Due to plane stress state in an arbitrary point of the bottom section, we will apply

maximum shear stress theory to write following condition of strength:

B _yHR
OOmax S

General conclusion. Both shells are equicritical (equidangerous).
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