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LECTURE 27   Stresses in Symmetrical Shells 

1   Characteristic features of shells 

Most elements of engineering structures to be designed may be reduced to the 

design schemes of a rod or a shell. 

As previously mentioned, by a rod is meant any body one of whose dimensions 

(length) is considerably greater than the other two. 

By a shell is meant a body one of whose dimensions (thickness) is considerably 

less than the other two. The examples of shells are shown in Fig. 1. 

 

    

Fig. 1 

The locus of points equidistant from both surfaces of a shell is called the middle 

surface. If the middle surface of a shell is a plane, such a shell is called a plate. 

A shell is thin-walled if 
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where   is the thickness of a shell, minR  is the radius. 

Symmetrical shells are those whose middle surface represents a surface of revolution. 

It will be assumed that the load acting on such a shell also possesses the 

properties of axial symmetry. The analysis of such shells is greatly simplified. The 

stress-analysis problem for shell of revolution is simplest to solve when it can be 

assumed that the stresses developed in the shell are uniformly distributed through its 

thickness, and so the shell undergoes no bending. 

2   Determination of stresses in symmetrical shells. Laplace's equation 

Consider a symmetrical shell of thickness  : 

  

Fig. 2 

Let mR  denote the radius of curvature of the meridian arc of the middle surface and R  

the second principal radius, i.e. the radius of curvature of the normal section 

perpendicular to the meridian arc. 

By two pairs of meridional and normal conical sections (Fig. 2) we isolate from 

the shell the element 1dS , 2dS  represented in Fig. 2. We shall assume that the faces of 

the element are acted on by stresses m  and  . The first stress m  is called the 

meridional stress, the vector of this stress is directed along the meridian arc. The 

second stress   is called the circumferential stress. 
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The stresses m  and   multiplied by the appropriate areas of the faces of the 

element give the forces 2 m dS  and 1 dS  shown in Fig. 3. 

 

Fig. 3 

The element is also subjected to the external normal pressure p. By projecting all 

forces on the normal, we obtain 
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we have 
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This relation is known as Laplace's equation. 

For the element shown in Fig. 2 it is possible to derive one more equation by 

projecting all forces on the direction of the axis of the shell. It is more convenient, 

however, to do this for a part of the shell cut off by a conical normal section. Hence we 

can determine the meridional stress m . Thus, the stresses m  and   in a shell are 

determined from the equations of equilibrium. 

The third principal stress, the stress of pressure between the layers of the shell, is 

assumed to be small and the state of stress of the shell is considered to be biaxial. 

Example 1   A spherical shell of radius R and thickness   is subjected to internal 

pressure p (Fig. 4). Determine the stresses developed in the shell. 

 

Fig. 4 

For a spherical shell 

 mR R R . 

Because of complete symmetry 

 m . 
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Laplace's formula (2) gives 

2
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The state of stress is biaxial 

1 2
2

 
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 
pR

. 

The minimum stress 3  is assumed to be zero. By the third strength theory, 

condition of strength is 

[ ]
2

 


 III
eq

pR
. 

Example 2   A cylindrical vessel is subjected to internal pressure p. The radius of 

the cylinder is R, its thickness is  . Determine the stresses. 

We cut off part of the cylinder by a transverse section (Fig. 5) and derive an 

equation of equilibrium for it 

     

Fig. 5 
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For a cylinder mR ,  R R . Hence from Laplace's formula we find 
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i.e. the circumferential stress is twice the meridional stress. 
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The element A isolated from the cylindrical shell is in the state of biaxial stress 

1

2

3

,
,
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The equivalent stress is 

1 3 [ ]   


   III
eq

pR
. 

Example 3   A conical vessel of thickness   is filled with a fluid of specific 

weight  . Determine the stresses in the vessel (Fig. 6). 

 

 

Fig. 6 

We cut off a lower portion of the conical shell by a normal conical section. It is 

well known, that the pressure is equal to the weight of the fluid in the volume over the 

cut off portion of the shell: 

( ) ( ) p z H z . 
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The radius mR ; 
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z
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
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By Laplace's formula 
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Due to this function is parabolic, it is necessary to determine its extremal value: 

0 
d

dz
,     2 0

cos 2

 

 
   e e

tg H
H z z . 

Maximum stress 
max  occurs at inner points of the conical shell at 

2


H
z . The graph 

of this stress distribution is shown on Fig. 8 (left). 
max  value is determined by the 

formula: 

max

21

4 cos


 


 


tg
H . 

Let us determine ( )m z  by projecting all forces on vertical z axes taking into 

account that the weight of situated below conical part is: 

21
( ) ( )

3
cV z R z z     and    ( ) R z ztg . 

Corresponding part of the shell is shown on Fig. 7. The equation of equilibrium is 



V. DEMENKO      MECHANICS OF MATERIALS    2020 
 

08.09.2020                15:20:20                              W:\+МЕХАНИКА МАТЕРИАЛОВ W\++НМКД АНГЛ\082 LECTURES 2020\27 Stresses in symmetrical shells.doc 

8 

 

 

Fig. 7 Fig. 8 
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To calculate this stress maximum value, let us determine its derivative and equate to 

zero: 

4
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The maximum stress 
max

m  occurs in the section of the conical shell at 
3

4
z H . It's 

maximum value is determined by the formula: 
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Graph of meridian stress distribution is shown on Fig. 8 (right). 

Therefore, two potentially critical cross sections must be considered to estimate 

this shell strength: 

section I-I    
2


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Applying III strength theory, midsection is critical, since 
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Example 4   Compare the strength two cylindrical pressure vessels of the same 

dimensions under hydraulic pressure with specific weight   but with different support 

conditions. 

1. Pressure vessel 1. It is shown on Fig. 9. Evidently, that meridian and circumferential 

stresses will be the functions of z coordinate due to hydraulic pressure dependence on 

the depths of liquid. Stress element is shown on Fig. 10. ( ) z  will be found applying 

Laplace formula: 

( ) ( ) ( ) ( )
( )


  


  

    


m z z p z p z R zR
z

R
, 

(0) 0  ,   ( )






HR

H . 
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This linear function is shown on Fig. 11 (left). 

  

Fig. 9 Fig. 10 

 
 

Fig. 11 Fig. 12 

Meridian stress ( )m z  we will calculate, applying equation of equilibrium for the low 

part of the vessel shown on Fig. 12: 

2 20 ( ) ( )2          z mF p z R z R z R

2 2 ( )2 ( ) 0           m mz R z R z R z . 



V. DEMENKO      MECHANICS OF MATERIALS    2020 
 

08.09.2020                15:20:20                              W:\+МЕХАНИКА МАТЕРИАЛОВ W\++НМКД АНГЛ\082 LECTURES 2020\27 Stresses in symmetrical shells.doc 

11 

In result, meridian stresses are zero for this type of boundary conditions, and bottom 

section is critical. 

Due to uniaxial stress state in an arbitrary point of the shell we will write following 

condition of strength: 

max
[ ]


 


 

HR
. 

2. Pressure vessel 2. It is shown on Fig. 13. 

 
 

Fig. 13 Fig. 14 

In this case, Laplace formula will lead to the same formula for ( ) z : 

( )
( )




 
 

p z R zR
z , 

(0) 0  ,   ( )






HR

H . 

This linear function is shown on Fig. 15 (left). 

Meridional stress ( )m z  we will calculate, applying equation of equilibrium for upper 

part of the vessel show on Fig. 16: 
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Fig. 15 Fig. 16 
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H . 

Due to plane stress state in an arbitrary point of the bottom section, we will apply 

maximum shear stress theory to write following condition of strength: 

max1 


 


 
HR

, 

2
2


 


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, 

3 0  . 

0 [ ]


 


 
   
 

III
eq
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. 

General conclusion. Both shells are equicritical (equidangerous). 


