Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 1

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 3

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 2	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 4	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 5

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 7

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 8	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 9

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 11

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 10	Complexity: 1
Variant: 10	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 12	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 13

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 15

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 14	Complexity: 1
	1 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 16	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 17

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 19

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 18 Complexity: 1	Variant: 18	Complexity: 1
---------------------------	-------------	---------------

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 20	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 21

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 23

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 22	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 24	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 25

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 27

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 26	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 28	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 29

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 31

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 32	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 33

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 35

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 34	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 36	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 37

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 39

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 40	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 41

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 43

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 42	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 44	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 45

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 47

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 46	Complexity: 1
Variant: 46	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 48	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 49

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 51

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 52	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 53

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 55

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 56	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 57

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 59

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 60	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 61

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 63

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant. 02 Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 64	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 65

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 67

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 66	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 68	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 69

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 71

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 70	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 72	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 73

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 75

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 74	Complexity: 1
	- I - J

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 76	Complexity: 1

Given: $[\sigma]_t = 160$ MPa; $[\sigma]_c = 200$ MPa; h/b = 2 for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 77

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 79

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 78	Complexity: 1
	1 5

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 80	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 81

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 83

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 84	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 85

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 87

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 88	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 89

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 91

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 92	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 93

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 95

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 96	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 97

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments.

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 99

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments:

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 100	Complexity: 1	

Given: $|\sigma|_{t} = 160 \text{ MPa}; |\sigma|_{c} = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 101

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 103

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 102	Complexity: 1
	1 0

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

variant: 104		Complexity: 1		
r 1	r 1			

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

C 1

Goal:

V---- 104

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 105

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments.

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 107

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 106	Complexity: 1

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments:

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 108	Complexity: 1	

Given: $|\sigma|_{t} = 160 \text{ MPa}; |\sigma|_{c} = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 109

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments.

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 111

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments:

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 112	Complexity: 1	
r 1	r 1	

Given: $|\sigma|_t = 160 \text{ MPa}; |\sigma|_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 113

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 115

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 114	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 116	Complexity: 1	

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 117

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 119

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 118	Complexity: 1
	1 0

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 120	Complexity: 1	

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 121

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 123

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 122 Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 124		Complexity: 1	
r 1			

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 125

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 127

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 126	Complexity: 1
	1 0

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 128	Complexity: 1	
r 1		

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 129

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments.

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 131

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 130	Complexity: 1

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments:

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 132		Complexity: 1	
F 7	r 7		

Given: $|\sigma|_t = 160 \text{ MPa}; |\sigma|_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 133

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments.

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 135

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments:

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 136		Complexity: 1	
r 1			

Given: $|\sigma|_t = 160 \text{ MPa}; |\sigma|_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b=2; d) dimensions of hollow rectangle cross-section in H/h=2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. Full name of the lecturer signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 137

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 139

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 140	Complexity: 1		

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 141

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 143

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 142	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 144		Complexity: 1	
r 7			

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 145

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 147

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer signature**

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 146	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

. 1.10

variant: 148	Complexity: 1		

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 149

Given: $[\sigma]_{t} = 160 \text{ MPa}; [\sigma]_{c} = 200 \text{ MPa}; h/b = 2 \text{ for rectangle cross-section.}$

Complexity: 1

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 150	Complexity: 1

Given: $[\sigma]_t = 160 \text{ MPa}; [\sigma]_c = 200 \text{ MPa}; h/b = 2$ for rectangle cross-section.

Goal:

1) copy from home problem No5 the graphs of shear forces and bending moments;

2) using condition of strength in pure bending calculate: a) diameter of round solid cross-section; b) diameters of hollow tube cross-section using thickness ratio $\alpha = d/D = 0.8$; c) dimensions of rectangle solid cross-section in h/b = 2; d) dimensions of hollow rectangle cross-section in H/h = 2; B/b = 2; e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a) lying on neutral axis; b) belonging to the most tensile or compressed layers of the section (choose yourself); c) in the point of the flange and web connection (one of two existing connections). Note, that the point must belong to the web. **Full name of the lecturer** signature