
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

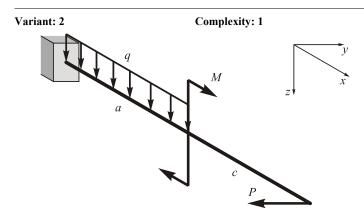
Variant: 3 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_{2} . **Goal:**

- 1) draw the graphs of bending moments $M_{v}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No......

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

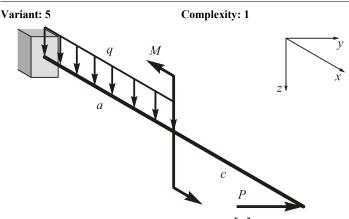
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 4	Con	aplexity: 1
	a M	y x
		c M

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section


signature

Mark:	

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

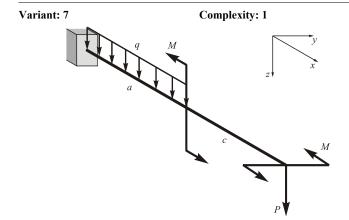
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No____. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

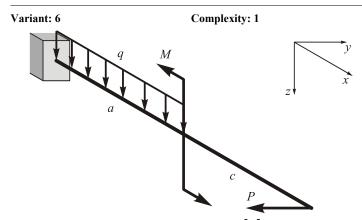
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 10 \text{ m}$; $\sigma = 2 \text{ m}$, $\sigma = 4 \text{ m}$. Cross-section: a) rectangle ($\sigma = 10 \text{ m}$); b) I-beam $\sigma = 10 \text{ m}$. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:	

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

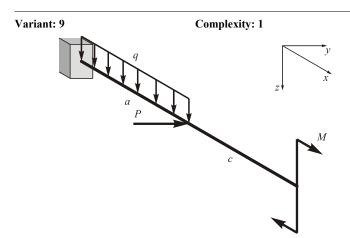
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 8	Comp	olexity: 1
a a	M	z \sqrt{x}
	C	M P

Given: $q = 10 \,\mathrm{kN/m}$; $P = 20 \,\mathrm{kN}$; $M = 10 \,\mathrm{kNm}$; $[\sigma] = 160 \,\mathrm{MPa}$; $a = 2 \,\mathrm{m}$, $c = 4 \,\mathrm{m}$. Cross-section: a) rectangle ($h = 20 \,\mathrm{cm}$, $b = 10 \,\mathrm{cm}$); b) I-beam No___. Goal:

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Full name of the lecturer

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N_2 .

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

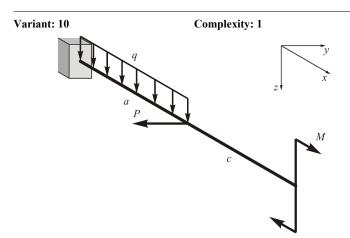
Full name of the student, group

Variant: 11 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $|\sigma| = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N_{\odot} .

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;

4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 12 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N_2 . Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 13

Complexity: 1

A

A

Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

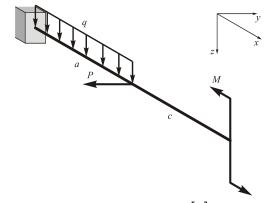
- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength


Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 15

Complexity: 1

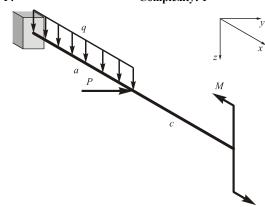
Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N $\underline{\text{}}$. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

Full name of the lecturer

Mark:

signature


National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

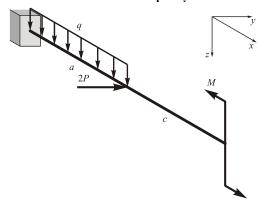
Variant: 14 Complexity: 1

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section

signature

Full name of the lecturer

Mark:


National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

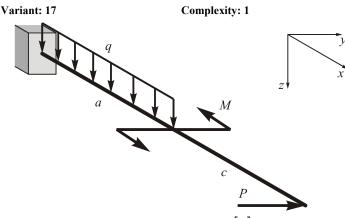
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 16 Complexity: 1

Given: $q = 10 \, \text{kN/m}$; $P = 20 \, \text{kN}$; $M = 10 \, \text{kNm}$; $\sigma = 10 \, \text{m}$; $a = 2 \, \text{m}$, $c = 4 \, \text{m}$. Cross-section: a) rectangle ($h = 20 \, \text{cm}$, $b = 10 \, \text{cm}$); b) I-beam N_2 . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Full name of the lecturer

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

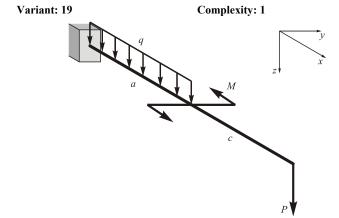
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_{2} . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

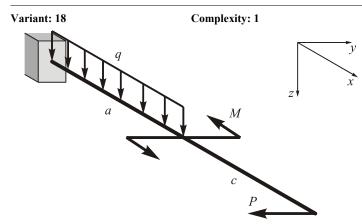
Full name of the student, group

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:


M

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

cuon. **signature**

Full name of the lecturer


Mark:	

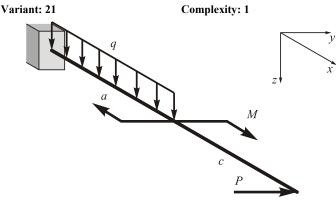
National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

- 1) draw the graphs of bending moments $M_{v}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Mark:	
mai K.	

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

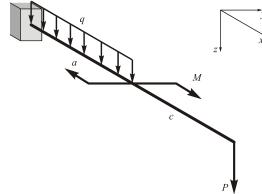
Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:


National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 23 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N2___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 22 Complexity: 1

Q

Q

P

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

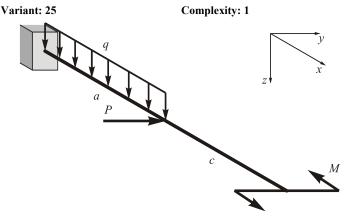
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 24 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam $N_{\underline{0}}$.

- 1) draw the graphs of bending moments $M_{v}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Full name of the lecturer

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

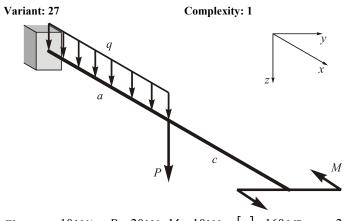
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

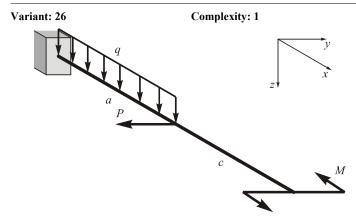
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No___. Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

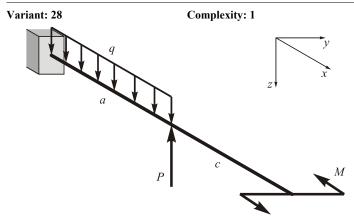
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature


Full name of the lecturer

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

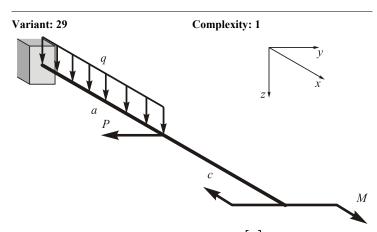
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No___. **Goal:**

- 1) draw the graphs of bending moments $M_y(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Mark:	

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

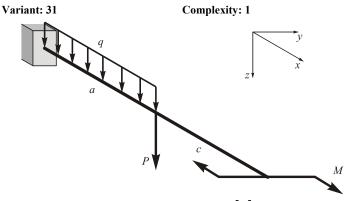
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0____. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

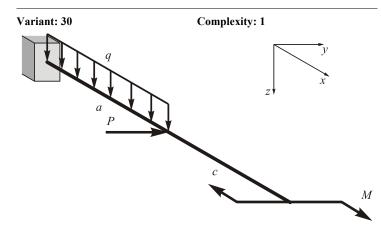
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No___. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

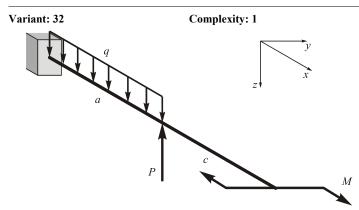
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:	
-------	--

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

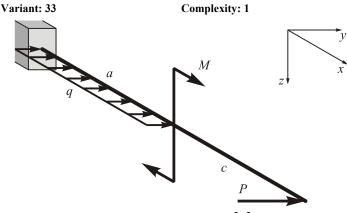
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Mark:		

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

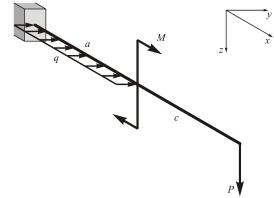
Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N $\underline{\text{}}$. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:


National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 35 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N $\underline{\text{}}$. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; $\sigma = 2 \text{ m}$, $\sigma = 4 \text{ m}$. Cross-section: a) rectangle ($\sigma = 10 \text{ cm}$); b) I-beam $\sigma = 10 \text{ cm}$. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:	
-------	--

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

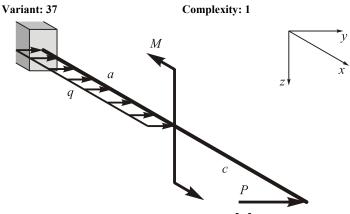
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 36 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 10 \text{ kNm}$; σ

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Full name of the lecturer

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

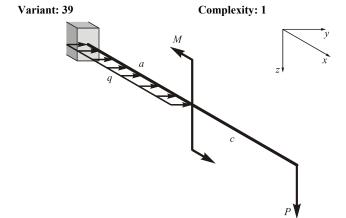
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

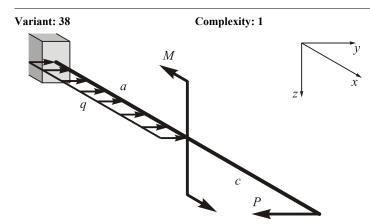
Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No___. Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:	
-------	--

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 40	Complex	ity: 1
q	a a c	y x
		P

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam $N_{\underline{0}}$.

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

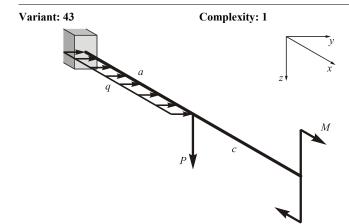
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_{2} . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

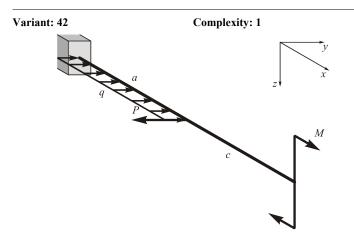
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

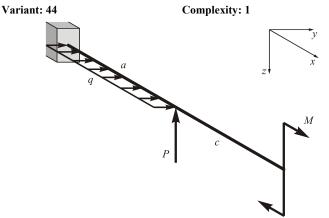
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h = 20 cm, b = 10 cm); b) I-beam No.....

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:	

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_{2} .

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full	name	of	the	lect	tur	e

Mark:	

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

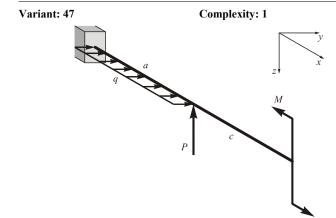
Variant: 45 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem

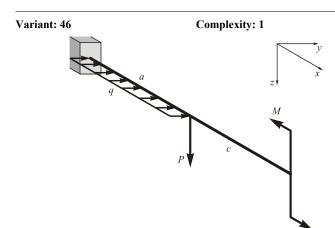
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No. Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

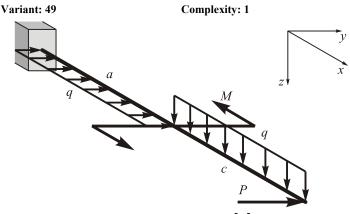
Variant: 48 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No....

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:	

signature

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

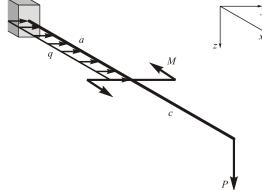
Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No___. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:


National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 51 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

Full name of the lecturer

Mark:

signature

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 50 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No___. Goal:

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

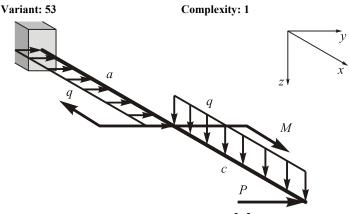
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 52 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Full name of the lecturer

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No___. **Goal:**

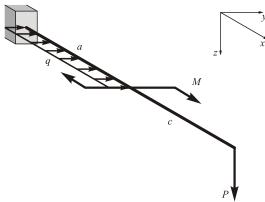
- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength


Complexity: 1

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

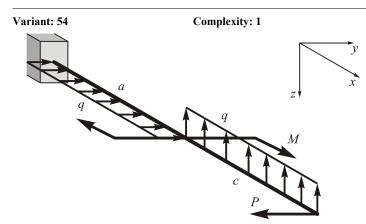
Variant: 55

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_{2} . **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:	

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

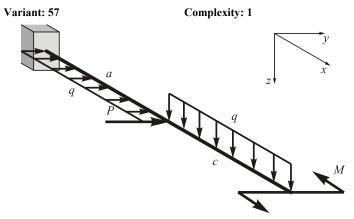
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 56 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Full name of the lecturer

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

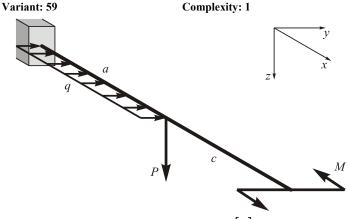
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No . Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem

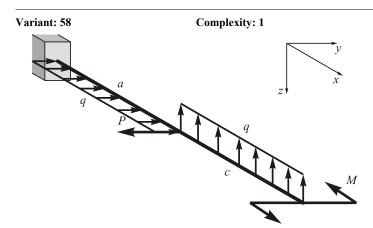
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $|\sigma| = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N_2 .

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section. signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

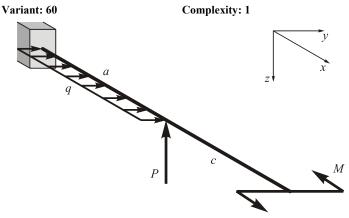
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No. Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:	

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

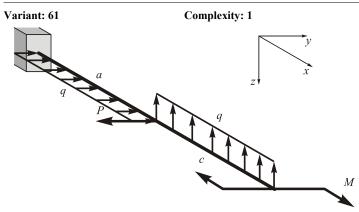
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No. Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Mark	

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

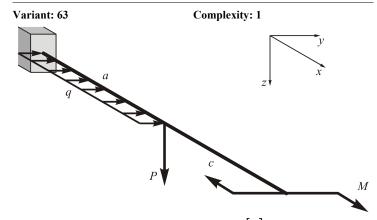
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_{2} . **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

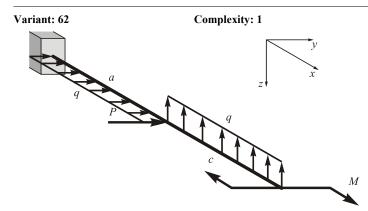
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

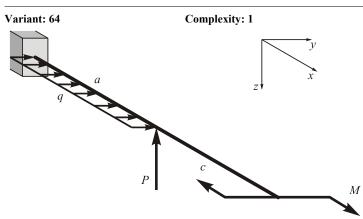
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:	
-------	--

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

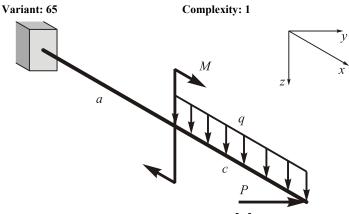
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h = 20 cm, b = 10 cm); b) I-beam N_2 . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Mark:	

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No___. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

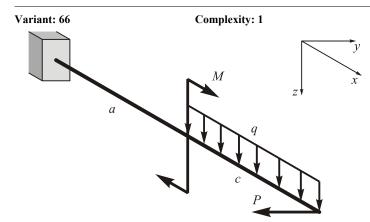
Full name of the student, group

Variant: 67 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam № ____. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:	

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

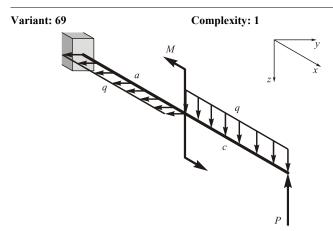
Full name of the student, group

Variant: 68

Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N9___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Full name of the lecturer

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

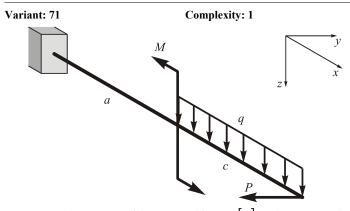
Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N $_$ __. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:


National aerospace university

"Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

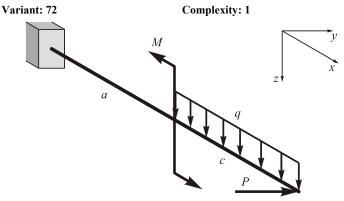
Variant: 70 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:		

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

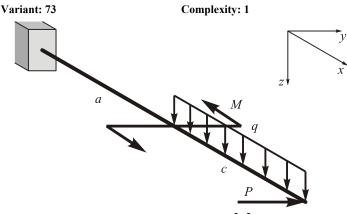
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam № ____. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

3.7 1		
Mark:		
1414117.		

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

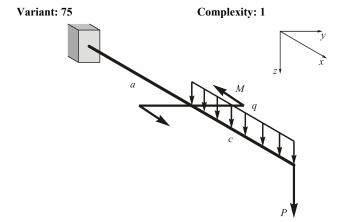
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

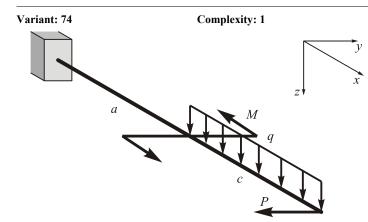
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

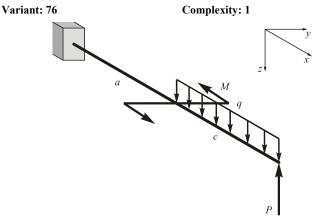
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No___. Goal:

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

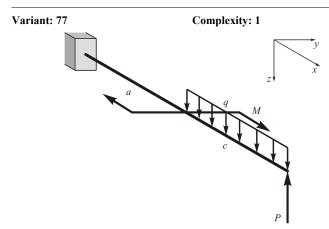
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 10 \text{ kNm}$; $\sigma = 10 \text{ kNm}$; $\sigma = 10 \text{ kN/m}$; $\sigma = 2 \text{ m}$; $\sigma = 2 \text{ m}$. Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Full name of the lecturer

Subject: mechanics of materials Document: home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

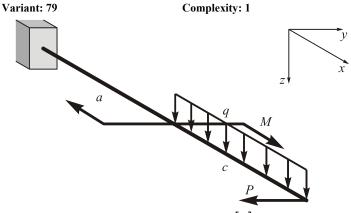
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No.

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

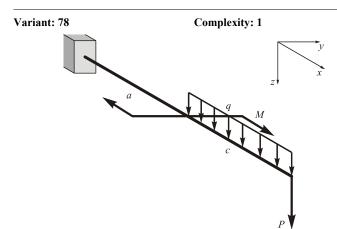
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N_2 . Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

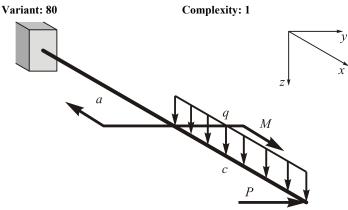
Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No.

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;

4) analytically find position of neutral axis in critical cross-section

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

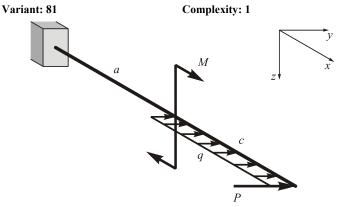
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No. Goal:

- 1) draw the graphs of bending moments $M_{_{\it V}}(x)$ and $M_{_{\it Z}}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Mark:		

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

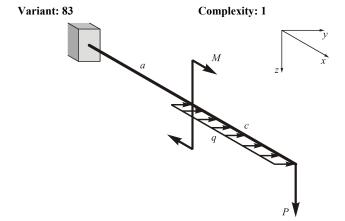
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

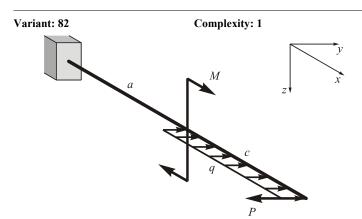
Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N $\underline{\text{}}$. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

- 1) draw the graphs of bending moments $M_y(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

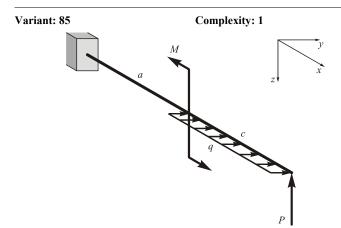
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 84	Complexity: 1
D a	a M z x
	q c
	P

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N9___. Goal:


- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

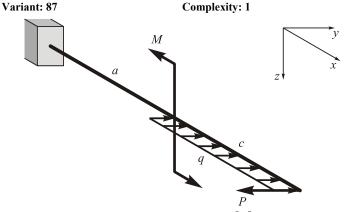
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No.

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N_2 . Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 86 Complexity: 1

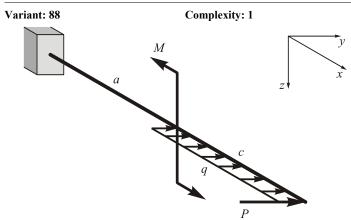
Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;

4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

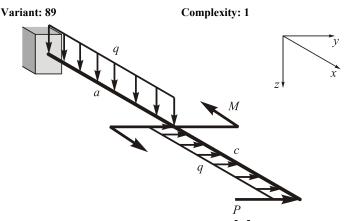
National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N_2 . Goal:


- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

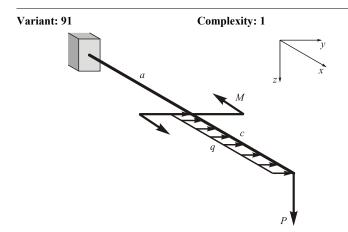
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

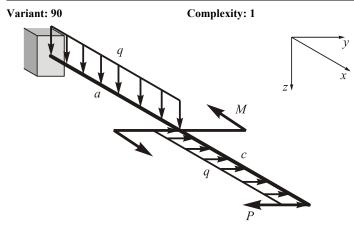
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N_2 .

- 1) draw the graphs of bending moments $M_{v}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

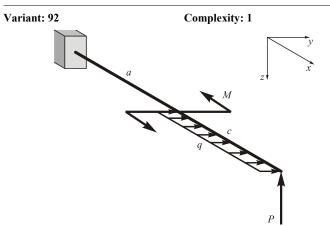
Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No....

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;

4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No. Goal:

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Full name of the lecturer

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

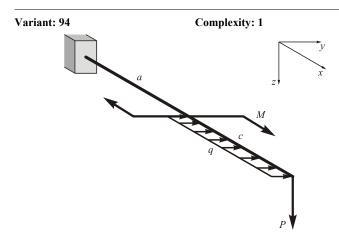
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No___. Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

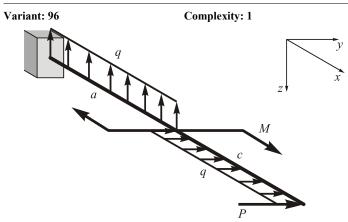
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_{2} . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


|--|

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

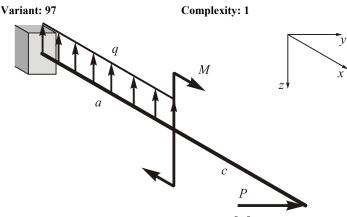
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 10 \text{ kNm}$; $\sigma = 10 \text{ kNm}$; $\sigma = 2 \text{ m}$, $\sigma = 4 \text{ m}$. Cross-section: a) rectangle ($\sigma = 10 \text{ kNm}$); b) I-beam $\sigma = 10 \text{ kNm}$. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Maule	
Mark:	

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N $\underline{\text{}}$. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 99

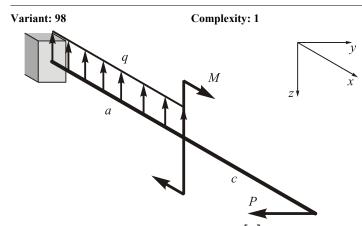
Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_{2} . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:		
-------	--	--

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

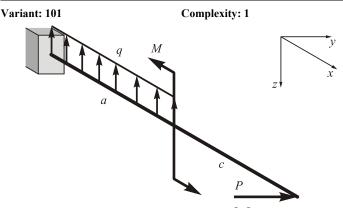
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 100	Complexity: 1	
a a	g M	z v
	c	
		P
		4

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Full	name	of	the	lectu	rei

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

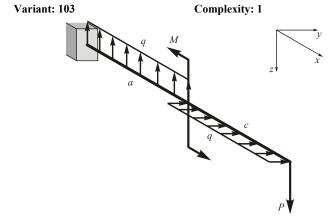
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

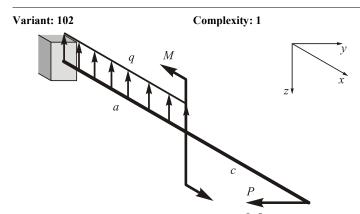
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N $^{\circ}$ ___.

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 104	Complexit	y: 1
a	q M	z v x
	q	P

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N2___. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 105 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No.... Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

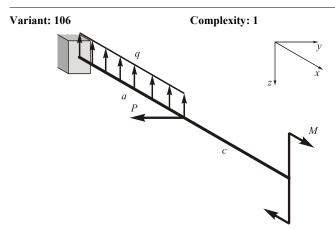
Variant: 107 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $|\sigma| = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No...

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; $\sigma = 2 \text{ m}$, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No.

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;

4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

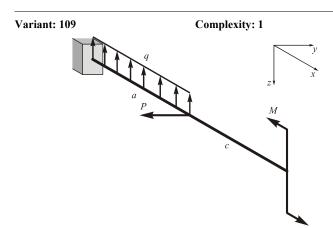
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 108 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No.


- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

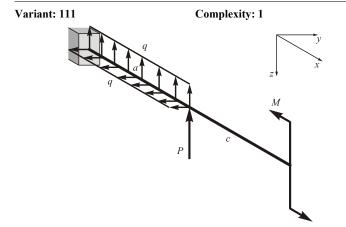
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

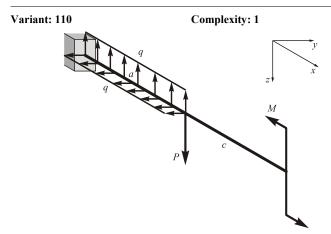
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0____.

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:	

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

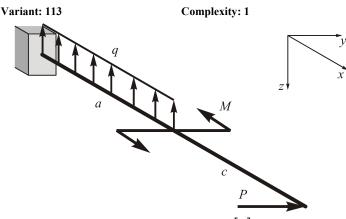
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 112 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 10 \text{ kNm}$; σ

- 1) draw the graphs of bending moments $M_{v}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Mark:	

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

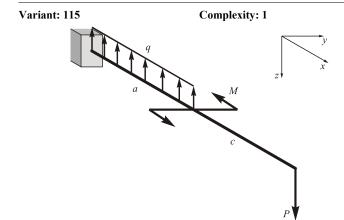
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N $\underline{\text{}}$. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

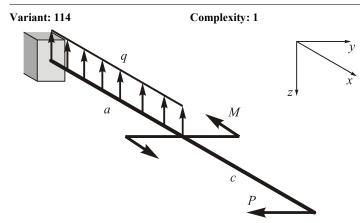
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No___. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

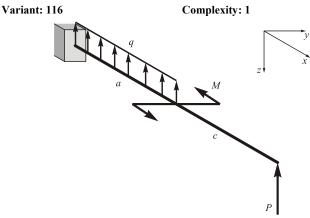
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

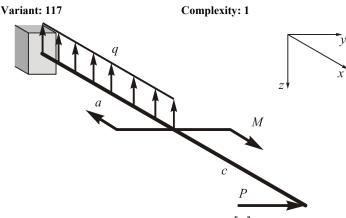
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: $q = 10 \, \text{kN/m}$; $P = 20 \, \text{kN}$; $M = 10 \, \text{kNm}$; $\sigma = 10 \, \text{m}$; $\sigma = 10 \, \text{kN/m}$; $\sigma = 2 \, \text{m}$, $\sigma = 2 \, \text{m}$. Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Mark:	

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N $\underline{\text{}}$. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

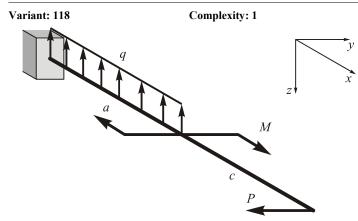
Variant: 119 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N2___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_{2} . Goal:

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

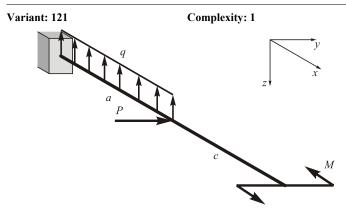
Full name of the student, group

Variant: 120 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature


Full	name	of	the	lecture

Mark:	

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

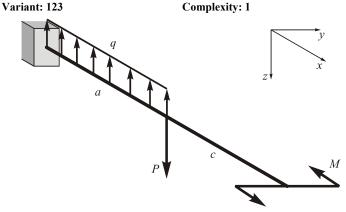
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

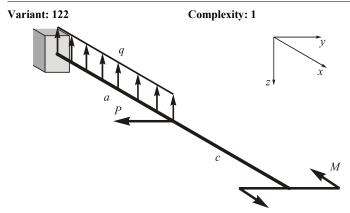
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

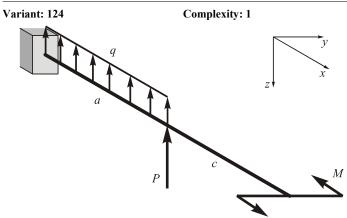
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section

signature

Full name of the lecturer


Mark:	

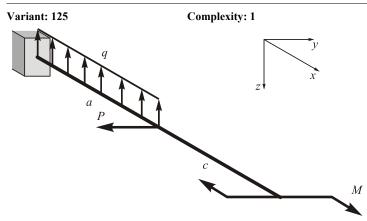
National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: $q = 10 \, \text{kN/m}$; $P = 20 \, \text{kN}$; $M = 10 \, \text{kNm}$; $[\sigma] = 160 \, \text{MPa}$; $a = 2 \, \text{m}$, $c = 4 \, \text{m}$. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N2___. **Goal:**


- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

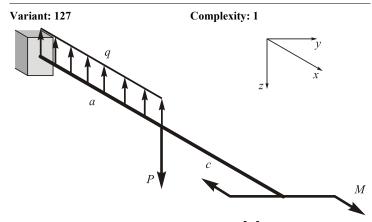
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_2 . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

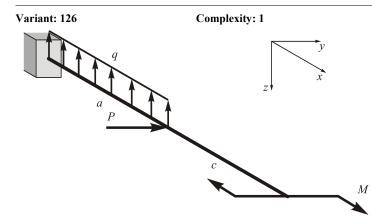
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

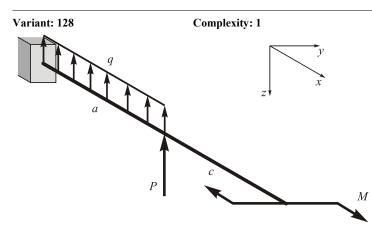
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

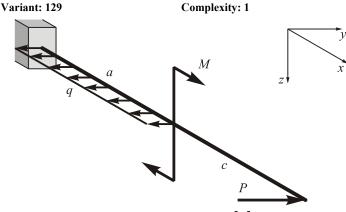
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Mark:	
viai n.	

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

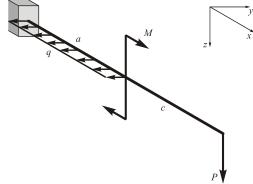
Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No___. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:


National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 131 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam N_{2} . **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

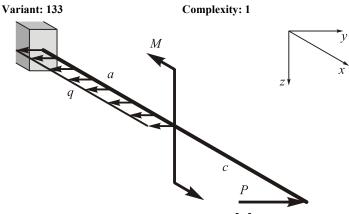
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 132 Complexity: 1

Given: $q = 10 \, \text{kN/m}$; $P = 20 \, \text{kN}$; $M = 10 \, \text{kNm}$; $[\sigma] = 160 \, \text{MPa}$; $a = 2 \, \text{m}$, $c = 4 \, \text{m}$. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam №____. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Mark:	

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

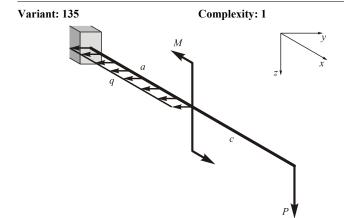
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No___. **Goal:**

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

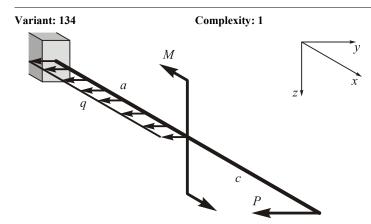
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 10 \text{ kNm}$; σ

- 1) draw the graphs of bending moments $M_{y}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

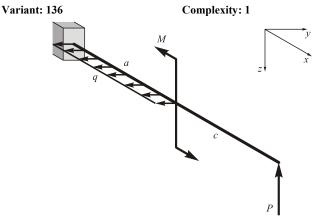
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; $\sigma = 2 \text{ m}$, $\sigma = 4 \text{ m}$. Cross-section: a) rectangle ($\sigma = 10 \text{ cm}$); b) I-beam $\sigma = 10 \text{ cm}$. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature


Full name of the lecturer

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

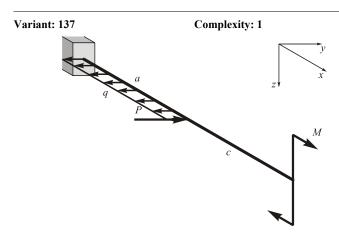
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam № ____. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Full name of the lecturer

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

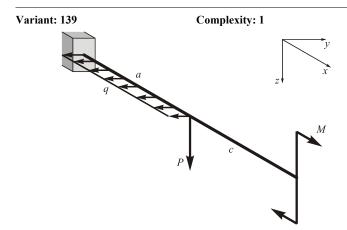
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N $\underline{\text{}}$. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

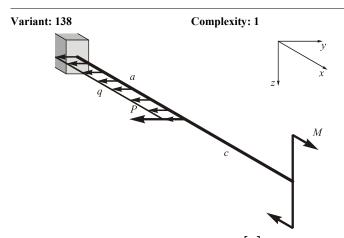
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No____. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

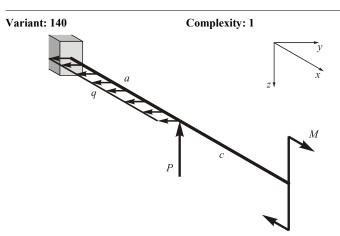
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

-section. signature

Full name of the lecturer


Mark:	
-------	--

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

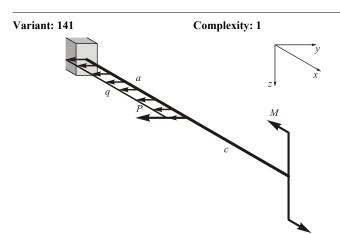
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam № ____. **Goal:**

- 1) draw the graphs of bending moments $M_{v}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Mark:	

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

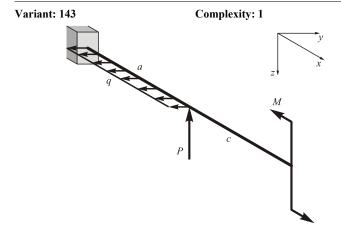
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $|\sigma| = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N_2 .

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N_2 .

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 142 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No...

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer

Mark:	

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

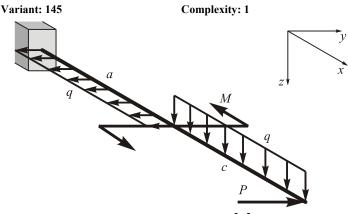
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Variant: 144 Complexity: 1

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20 cm, b=10 cm); b) I-beam No.

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Full name of the lecturer

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

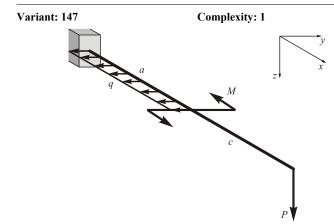
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam No___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

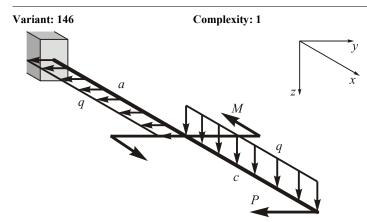
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 10 \text{ kNm}$; σ

- 1) draw the graphs of bending moments $M_{y}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

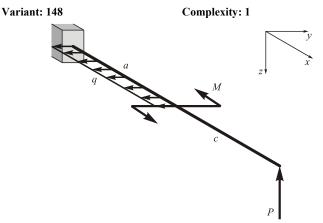
Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature


Full name of the lecturer

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

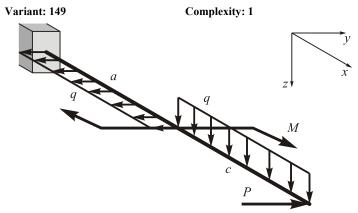
Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___.

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.


signature

Full name of the lecturer

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

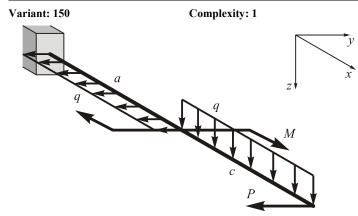
Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $\sigma = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. **Goal:**

- 1) draw the graphs of bending moments $M_v(x)$ and $M_z(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Full name of the lecturer


Mark:	

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem

Topic: Stress Analysis of the Beam in Oblique Bending.

Full name of the student, group

Given: q = 10 kN/m; P = 20 kN; M = 10 kNm; $[\sigma] = 160 \text{ MPa}$; a = 2 m, c = 4 m. Cross-section: a) rectangle (h=20cm, b=10cm); b) I-beam N0___. Goal:

- 1) draw the graphs of bending moments $M_{\nu}(x)$ and $M_{z}(x)$;
- 2) design the graph of stress distribution in critical cross-section;
- 3) find critical point in critical section and estimate the strength of the beam;
- 4) analytically find position of neutral axis in critical cross-section.

signature

Mark:	