Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression

Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 10 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression

Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 10 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials **Document:** home problem **Topic:** stress analysis in eccentric tension – compression **Full name of the student, group**

Variant: 3

Mark:

Complexity: 1

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 10 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 10 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension - compression

Full name of the student, group

Variant: 5

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 10 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross - section ABCD and check the strength; 2) Draw the graph of stress distribution in cross - section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension - compression Full name of the student, group

Variant: 7

Complexity: 1

Given: $H = 20 \text{ cm}, h = 10 \text{ cm}, B = 10 \text{ cm}, b = 5 \text{ cm}, F = 10 \text{ kN}, [\sigma] = 160 \text{ MPa}$.

Goal: 1) calculate stresses in an arbitrary cross - section ABCD and check the strength; 2) Draw the graph of stress distribution in cross - section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension - compression

Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 10 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross - section ABCD and check the strength; 2) Draw the graph of stress distribution in cross - section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

```
signature
```

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Document: home problem Topic: stress analysis in eccentric tension - compression Full name of the student, group

Variant: 8

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 10 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross - section ABCD and check the strength; 2) Draw the graph of stress distribution in cross - section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Mark:

Mark:

Subject: mechanics of materials

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension - compression

Full name of the student, group

Variant: 9

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 10 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross - section ABCD and check the strength; 2) Draw the graph of stress distribution in cross - section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension - compression

Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 10 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross - section ABCD and check the strength; 2) Draw the graph of stress distribution in cross - section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute"

Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension - compression Full name of the student, group

Given: $H = 20 \text{ cm}, h = 10 \text{ cm}, B = 10 \text{ cm}, b = 5 \text{ cm}, F = 10 \text{ kN}, [\sigma] = 160 \text{ MPa}$.

Goal: 1) calculate stresses in an arbitrary cross - section ABCD and check the strength; 2) Draw the graph of stress distribution in cross - section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension - compression Full name of the student, group

Variant: 11

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 10 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross - section ABCD and check the strength; 2) Draw the graph of stress distribution in cross - section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension - compression

Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 10 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross - section ABCD and check the strength; 2) Draw the graph of stress distribution in cross - section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension - compression Full name of the student, group

Variant: 15

Complexity: 1

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 10 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross - section ABCD and check the strength; 2) Draw the graph of stress distribution in cross - section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension - compression

Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 10 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross - section ABCD and check the strength; 2) Draw the graph of stress distribution in cross - section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

Mark:

signature

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension - compression Full name of the student, group

Variant: 16

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 10 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross - section ABCD and check the strength; 2) Draw the graph of stress distribution in cross - section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Mark:

signature

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression

Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 20 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression

Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 20 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression Full name of the student, group

Variant: 19

Mark:

Complexity: 1

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 20 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 20 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression

Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 20 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression Full name of the student, group

Variant: 23

Complexity: 1

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 20 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression

Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 20 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression Full name of the student, group

Variant: 24

Given: $H = 20 \text{ cm}, h = 10 \text{ cm}, B = 10 \text{ cm}, b = 5 \text{ cm}, F = 20 \text{ kN}, [\sigma] = 160 \text{ MPa}$.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Mark:

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression

Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 20 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression

Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 20 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression Full name of the student, group

Given: $H = 20 \text{ cm}, h = 10 \text{ cm}, B = 10 \text{ cm}, b = 5 \text{ cm}, F = 20 \text{ kN}, [\sigma] = 160 \text{ MPa}$.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 20 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression

Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 20 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression

Full name of the student, group

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 20 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Mark:

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression Full name of the student, group

Variant: 31

Mark:

Complexity: 1

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 20 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials Document: home problem Topic: stress analysis in eccentric tension – compression Full name of the student, group

Variant: 32

Given: H = 20 cm, h = 10 cm, B = 10 cm, b = 5 cm, F = 20 kN, $[\sigma] = 160$ MPa.

Goal: 1) calculate stresses in an arbitrary cross – section *ABCD* and check the strength; 2) Draw the graph of stress distribution in cross – section ABCD; 3) determine analytically position of neutral axis.

Full name of the lecturer

signature

Mark:

E-II - and