MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
 National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Course
Mechanics of materials and structures HOME PROBLEM 1

Geometrical Properties of Composite Plane Area

Name of student:
Group:
Advisor:
Data of submission:

Mark:

National aerospace university
 "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials
Document: home problem
Topic: geometrical properties of plane area

Full name of the student, group

Variant: 1
Complexity: 1

Given: $h=3 \mathrm{~cm}, \quad b=2 \mathrm{~cm}, \quad$ channel № 5 .

Goal: 1) determine the coordinates of cross-sectional centroid; 2) determine the position of central principal axes of inertia and principal central moments of inertia

Full name of the lecturer signature

Mark: \square

Solution

1. Use the following numerical data (see Table) and draw the section in scale (Fig. 1).

Fig. 1

Parts of the composite area	Geometrical properties								
	$\begin{aligned} & h_{i}, \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & b_{i}, \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & A_{i}, \\ & \mathrm{~m}^{2} \end{aligned}$	$\begin{aligned} & I_{x_{i}} \\ & \mathrm{~m}^{4} \end{aligned}$	$\begin{aligned} & I_{y_{i}} \\ & \mathrm{~m}^{4} \end{aligned}$	$\begin{aligned} & I_{x_{i} y_{i}} \\ & \mathrm{~m}^{4} \end{aligned}$	$\begin{aligned} & I_{\max _{i}}, \\ & \mathrm{~m}^{4} \end{aligned}$	$\begin{aligned} & I_{\min _{i}} \\ & \mathrm{~m}^{4} \end{aligned}$	$\begin{aligned} & y_{0}, \\ & \mathrm{~m} \end{aligned}$
$\begin{aligned} & 1-\underset{\text { GOST }}{ } 8239-72 \\ & \hline \end{aligned}$	0.2	0.1	26.8×10^{-4}	115×10^{-8}	1840×10^{-8}	0	1840×10^{-8}	115×10^{-8}	-
$\begin{aligned} & 2-\quad \text { GOST 8509-72 } \end{aligned}$	0.16	0.16	31.4×10^{-4}	774×10^{-8}	774×10^{-8}	-	1229×10^{-8}	319×10^{-8}	4.3×10^{-2}

The coordinates of two C_{1} and C_{2} centroids for the parts are known from assortments $\left(x_{0}=y_{0}=4.3 \times 10^{-2} \mathrm{~m}\right)$.
2. Calculation of the centroidal coordinates for composite area.

Axes x_{1}, y_{1} are selected as reference axes in this study (see Fig. 1).
The following formulae are used

$$
\begin{gathered}
x_{c}=S_{y_{1}} / A, \quad y_{c}=S_{x_{1}} / A, \quad \text { where } \\
S_{y_{1}}=S_{y_{1}}^{\dagger}+S_{y_{1}}^{\urcorner} ; \quad S_{x_{1}}=S_{x_{1}}^{\dagger}+S_{x_{1}}^{\urcorner} . \\
A=A+A\urcorner=26.8 \times 10^{-4}+31.4 \times 10^{-4}=58.2 \times 10^{-4} \mathrm{~m}^{2} .
\end{gathered}
$$

$S_{x_{1}}^{-1}$ and $S_{y_{1}}^{\mathrm{H}}$ are zero due to central character of x_{1}, y_{1} axes for I-beam.

$$
\begin{gathered}
\left.S_{x_{1}}^{\urcorner}=A\right\urcorner\left(+\left(b_{2}-\frac{b_{1}}{2}-y_{0}\right)\right)=31.4 \times 10^{-4}(+(0.16-0.05-0.043))=31.4 \times 10^{-4} \times 0.067= \\
=+2.10 \times 10^{-4} \mathrm{~m}^{3} . \\
\left.S_{y_{1}}^{\urcorner}=A\right\urcorner\left(-\left(\frac{h_{1}}{2}+x_{0}\right)\right)=31.4 \times 10^{-4}(-(0.1+0.043))=-4.49 \times 10^{-4} \mathrm{~m}^{3} . \\
S_{y_{1}}=0-4.49 \times 10^{-4}=-4.49 \times 10^{-4} \mathrm{~m}^{3} . \\
S_{x_{1}}=0+2.10 \times 10^{-4}=+2.10 \times 10^{-4} \mathrm{~m}^{3} . \\
x_{c}=-4.49 \times 10^{-4} / 58.2 \times 10^{-4}=-0.077 \mathrm{~m}=-7.715 \mathrm{~cm} . \\
y_{c}=+2.10 \times 10^{-4} / 58.2 \times 10^{-4}=+0.03615 \mathrm{~m}=+3.615 \mathrm{~cm} .
\end{gathered}
$$

Results: the coordinates of the C centroid are equal to:

$$
\begin{gathered}
x_{c}=-7.715 \times 10^{-2} \mathrm{~m}, \\
y_{c}=3.615 \times 10^{-2} \mathrm{~m} .
\end{gathered}
$$

They are shown on Fig. 1.
3. Calculation of central moments of inertia relative to central x_{c}, y_{c} axes.

Let us denote the x_{c}, y_{c} axes as the centroidal axes of the composite area. The moments and product of inertia with respect to these axes can be obtained using the parallel-axis theorems. The results of such calculations are as follows.

$$
\begin{gathered}
I_{x_{c}}=I_{x_{c}}^{Н}+I_{x_{c}}^{\urcorner}, \\
I_{x_{c}}{ }^{\mathrm{H}}=I_{x_{1}}{ }^{\ominus}+c_{1}^{2} A_{1}=115 \times 10^{-8}+3.615^{2} \times 26.8 \times 10^{-8}=465.23 \times 10^{-8} \mathrm{~m}^{4}, \\
I_{x_{c}}^{\urcorner}=I_{x_{2}}^{\urcorner}+c_{2}^{2} A_{2}=774 \times 10^{-8}+3.085^{2} \times 31.4 \times 10^{-8}=1072.8 \times 10^{-8} \mathrm{~m}^{4}, \\
I_{x_{c}}=(465.23+1072.8) 10^{-8}=1538 \times 10^{-8} \mathrm{~m}^{4} . \\
I_{y_{c}}=I_{y_{c}}^{-1}+I_{y_{c}}^{\urcorner}, \\
I_{y_{c}}{ }^{\dagger}=I_{y_{1}}{ }^{\dagger}+a_{1}^{2} A_{1}=1840 \times 10^{-8}+7.715^{2} \times 26.8 \times 10^{-8}=3435.2 \times 10^{-8} \mathrm{~m}^{4}, \\
I_{y_{c}}=I_{y_{2}}^{\urcorner}+a_{2}^{2} A_{2}=774 \times 10^{-8}+6.585^{2} \times 31.4 \times 10^{-8}=2135.6 \times 10^{-8} \mathrm{~m}^{4}, \\
I_{y_{c}}=(3435.2+2135.6) 10^{-8}=5570.8 \times 10^{-8} \mathrm{~m}^{4} .
\end{gathered}
$$

4. Calculation of the product of inertia relative to x_{c}, y_{c} axes.

$$
I_{x_{c} y_{c}}=I_{x_{c} y_{c}}^{\bullet}+I_{x_{c} y_{c}}^{\neg},
$$

For the first part of the section:

$$
I_{x_{c} y_{c}}{ }_{c}^{\mathrm{H}}=I_{x_{1} y_{1}}{ }^{H}+a_{1} c_{1} A_{1}=0+7.715(-3.615) \times 10^{-4} \times 26.8 \times 10^{-4}=-747.4 \times 10^{-8} \mathrm{~m}^{4} .
$$

For second part the similar approach is used:

$$
I_{x_{c} y_{c}}^{\urcorner}=I_{x_{2} y_{2}}^{\urcorner}+a_{2} c_{2} A_{2} .
$$

The value of $I_{x_{2} y_{2}}^{\urcorner}$should be determined beforehand using transformation equations for product of inertia and taking into account that in rotation of axes the sum of axial moments of inertia is unchanged, i.e. $I_{x_{2}}+I_{y_{2}}=I_{\max }+I_{\min }$. The axes rotating procedure is shown in Fig. 2. The x_{3}, y_{3} axes are selected as reference axes in this rotation to x_{2}, y_{2} axes.

Fig. 2

Due to cross-section symmetry relative to x_{3} axis, the angle of rotation is $\theta_{p}=-45^{\circ}$ (clockwise rotation).
In our case, general view of transformation equation for product of inertia

$$
I_{x_{1} y_{1}}=\frac{I_{x}-I_{y}}{2} \sin 2 \theta+I_{x y} \cos 2 \theta
$$

will be rewritten as

$$
I_{x_{2} y_{2}}=\frac{I_{x_{3}}-I_{y_{3}}}{2} \sin 2 \theta_{p}+I_{x_{3} y_{3}} \cos 2 \theta_{p}
$$

After substituting,

$$
I_{x_{2} y_{2}}=\frac{1229 \times 10^{-8}-319 \times 10^{-8}}{2} \sin \left(-90^{\circ}\right)+0 \cos \left(-90^{\circ}\right)=-455 \times 10^{-8} \mathrm{~m}^{4} .
$$

In our designations, this product will be denoted as $I_{x_{2} y_{2}}^{\urcorner}=-455 \times 10^{-8} \mathrm{~m}^{4}$.

Consequently,

$$
I_{x_{c} y_{c}}^{\urcorner}=-455 \times 10^{-8}+(-6.585)(3.085) \times 31.4 \times 10^{-8}=-1092.9 \times 10^{-8} \mathrm{~m}^{4} .
$$

Total result after substitutions is

$$
I_{x_{c} y_{c}}=(-747.4-1092.9) \times 10^{-8}=-1840.3 \times 10^{-8} \mathrm{~m}^{4} .
$$

5. Rotating central x_{c}, y_{c} axes to central principal position at θ_{p} angle.

Substituting the values of central moments and product of inertia into the equation for the angle θ_{p}, we get

$$
\operatorname{tg} 2 \theta_{p}=\frac{2 I_{x_{c} y_{c}}}{I_{y_{c}}-I_{x_{c}}}=\frac{2 \times(-1840.3)}{5570.8-1538}=-0.9127 \Rightarrow 2 \theta_{p}=-42^{\circ} 24^{\prime} \Rightarrow \theta_{p}=-2192^{\prime} .
$$

Note, that this angle is clockwise due to used sign convention. It is shown in resultant picture shown below (Fig. 3).
It is important to note that in any rotation of axes to principal position larger of two axial moments of inertia ($I_{y_{c}}=5570.8 \mathrm{~cm}^{4}$) becomes the largest (maximum) and smaller one ($I_{y_{c}}=1538 \mathrm{~cm}^{4}$) becomes the minimum in value.
6. Calculation of principal central moments of inertia for composite area.

The principal moments of inertia are determined using the formula

$$
\begin{aligned}
I_{U V}=I_{\operatorname{mix}} & =\frac{I_{x_{c}}+I_{y_{c}}}{2} \pm \sqrt{\left(\frac{I_{x_{c}}-I_{y_{c}}}{2}\right)^{2}+I_{x_{c} y_{c}}^{2}}=(3554.4 \pm 2293.2) \times 10^{-8} \mathrm{~m}^{4} \\
I_{U} & =I_{\max }=5847.6 \times 10^{-8} \mathrm{~m}^{4}, \quad I_{V}=I_{\min }=1261.2 \times 10^{-8} \mathrm{~m}^{4}
\end{aligned}
$$

Note, both values must be positive!

7. Checking the results:
(a) Checking the correspondence: $I_{\max }>I_{y_{c}}>I_{x_{c}}>I_{\min }$ (in the case $I_{y_{c}}>I_{x_{c}}$) or

$$
I_{\max }>I_{x_{c}}>I_{y_{c}}>I_{\min }\left(\text { in the case } I_{x_{c}}>I_{y_{c}}\right) .
$$

In our case, $\quad 5847.6 \times 10^{-8}>5570.8 \times 10^{-8}>1538 \times 10^{-8}>1261.2 \times 10^{-8}$.
(b) Checking the constancy of the sum of axial moments of inertia in rotating the axes:

$$
\begin{aligned}
I_{\max }+I_{\min }=I_{x_{c}}+I_{y_{c}}, \rightarrow & 5847.6 \times 10^{-8}+1261.2 \times 10^{-8}=5570.8 \times 10^{-8}+1538 \times 10^{-8}, \\
& \left(7108.8 \times 10^{-8}=7108.8 \times 10^{-8}\right) .
\end{aligned}
$$

(c) Calculating the evidently zero central principal product of inertia of the section:

$$
I_{U V}=I_{x_{c} y_{c}} \cos 2 \theta_{p}+\frac{I_{y_{c}}-I_{z_{c}}}{2} \sin 2 \theta_{p}=
$$

$=\left[(-1804.3) \times 0.7384+\frac{1538-5570.8}{2} \times(-0.6743)\right] \times 10^{-8}=(-1358.9+1359) \times 10^{-8} \mathrm{~m}^{4} \cong 0$.

					5	

Fig. 3

