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Given: [o], =160 MPa; [o], =200 MPa;
P, = 10kN; P, = 50kN, P, =80kN;

a=3m,b=4m,c=5m.
Goal:

1) open static indeterminacy and design the graph on normal forces;

2) calculate cross-sectional area F;

3) calculate acting stresses in the portions of the rod and design the graph

of their distribution along the length of the rod;
4) design the graph of the rod elongations;
5) estimate stress state in critical cross-section.
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Solution

Genegrad method in saticaly
indeterminate rods and rod system
analysis is in finding complementary
eguations of deformation
compatibility to determine internal
forces in the rod. The number of
compatibility equations depends on
degree of static indeterminacy.

In our case, degree of static

indeterminacy k=m- n, where
m=2 — total number of constraints
(reactions), n=1 — number of

eguations of equilibrium.

After substituting

k=2-1=1,

Conclusion: the rod is singly
statically indeter minate.
Due to axial loading, only axid
reactions Ry and Rg take place in

this problem.

1. Calculating the support reactions R and Rg (see Fig. 1).
(a) from condition of equilibrium § F, =0. Direction to the right is assumed to be

positive (see Fig. 1).

éFX=O=RE- P4- Fé+P2+RA:O_

(b) designing the compatibility equation.

It is evident that this deformable rod has two immobile cross-sections A and E. Therefore
total elongation of therod iszero, i.e. Dipg © O:

Diag =Diag + Digc +Dicp +Dipg-
The elongations of particular portions AB, BC, CD, DE are generated by corresponding
normal forces. According to the method of sections the equations of normal forces are the

following:

-1 (0<x<c)
N)(X) = +Ry.
-l (0<x<h)
Ny () =+Ra + Py

-1l (O<x<al4)
N)l(”(x):+RA+P2- Ps.
IV-IV (0<x<3a/4)
N)l(v(x)=+RA+ P- P- Py
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Corresponding elongations of the portions are:

1, a8 0
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5 3 9 _
® SRa*T AR+ R) +  (Ra+Po- R)+ 2 (Ra+ Py - By~ Py) =00®

® 80Rp =- 60P, +36P; + 27P, =- 600+1800+ 2160 =3360® Rp :% =+42 kN.
"+" sign of Rp reaction supports the conclusion that Ra reaction is actually determined to
the right. After Rp finding, static indeterminacy is opened and normal forces may be
determined.
2. Cdlculating the normal forcesin an arbitrary cross-section of each portion.

NJ(X) = Ry = +42 kN,

NY (x) = +Rp + P, =+42+10=52 kN,

NY'(X) = Rp+ P, - Py=+42+10- 50=+2 kN,

NY (X) = Rp+ P, - Py- Py =+42+10- 50- 80=- 78 kN.
The graph of normal force distribution is shown on Fig. 1.

3. Calculating the cross-sectional area A from condition of strength in critical portion.
Dueto [s ] [s]c, it will be necessary to design two conditions of strength —for critically
tensile and critically compressed portions. In our case,

(a) for three tensile portions I1-11 portion is evidently critical after comparing the relations

42 52 and % That iswhy

3A’ 2A
I I s 103
S maxt = Sx =N§ Defs]e AFEX )52 10 ~=1625" 10" m?;
A [s], 2 160" 10
(b) for compressed portion:
\Y
N (x)‘ v .13
_|v_‘X Ny " () 787100 . ... 4. 2
‘Smaxc‘—sx = £[3]c® A= [XS] =00 106—3.9 10" m~.
C

For future calculating, we should select larger of two cross-sectiona areas which will
satisfy both conditions of strength:

Anax = A. =397 104 m?.
4. Calculating the acting stresses.
! = Nx(®) _ 42" 10°
3Anx 3391074
sl = Ny (9 _ 52" 10°
2Amax 27 39 1074

=+35.9 MPa,

=+66.7 MPa,
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X T A 39 108
Graph of stress distribution is shown on Fig. 1.

=+5.1 MPa,

=-200.0MPa.

5. Analysis of stress state type in an arbitrary point K of critical section.

point K .
AV oy =200.0 MPa
AN - Sy’ =S3=-200MPa,
________ Remaining principal stresses are:
’ S1=S» =0.
Fig. 2

Conclusion: stress stateisuniaxial, deformation istension.

6. Drawing the graph of displacements.
E point is selected as the origin. The displacements of particular points are designated by
d. Therefore, dg =0. Due to Hook's law, the displacement function is linear, that is why

the displacements of each portion tip are numerically equal to the portion elongation or
shortening. Elasticity modulus value E =2" 10" Pa isused in this calculation.

\Y Coa 103 2
dp =Digp = (X3 __ - 78 110 3 3 £ =-225"10*m=-2.25mm.
4EAN 4 27101 397107
[l
dc =Dlgc =Dlgp +Dipc =-2257 107 + I::X—(X)a 225 1074+
aX

2°10% 3

i £=-225710 44019 10%4=-2231"10*m=-2.23mm.
4" 2" 101 39" 107

I ()b _

ax

dB:DlEB:DlEC+D|CB:'22-31, 104 2 -22.31° 10 +

52° 103" 4
2°2- 101 39 1074

=-.2231" 1004 +13.33° 1004 =-898" 10 * m=-0.898 mm.

(x)c

dp=Dlgy =Dlgg + Digp =-8.98" 10° +3 =-8.98" 104+

aX
42°10°" 5

3% 10" 397 104 o _ _
Let us estimate the error of calculating, since redly the displacement of A point must be
zero according to compatibility equation:

fae 4
D=O'Ol—104' 100% =0.11%.
8.97 10" -

Dueto negligibly little error, the calculation is true.
The graph of displacementsis aso shown on Fig. 1.

=-898 10 4+897  104=001 104 m.




