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General method in statically 
indeterminate rods and rod system 
analysis is in finding complementary 
equations of deformation 
compatibility to determine internal 
forces in the rod. The number of 
compatibility equations depends on 
degree of static indeterminacy. 

In our case, degree of static 
indeterminacy k m n= − , where 

2m =  – total number of constraints 
(reactions), 1n =  – number of 
equations of equilibrium. 

After substituting 
2 1 1k = − = . 

Conclusion: the rod is singly 
statically indeterminate. 
Due to axial loading, only axial 
reactions AR  and ER  take place in 
this problem. 

 
 
 
 
 
 

 Solution 
1. Calculating the support reactions AR  and ER  (see Fig. 1). 
(а) from condition of equilibrium 0xF =∑ . Direction to the right is assumed to be 
positive (see Fig. 1). 

4 3 20 0x E AF R P P P R= = − − + + =∑ . 
(b) designing the compatibility equation. 
It is evident that this deformable rod has two immobile cross-sections A and E. Therefore 
total elongation of the rod is zero, i.e. 0AEl∆ ≡ : 

AE AB BC CD DEl l l l l∆ = ∆ + ∆ + ∆ + ∆ . 
The elongations of particular portions AB, BC, CD, DE are generated by corresponding 
normal forces. According to the method of sections the equations of normal forces are the 
following:  
 
 I–I   (0 x c< < )      III–III   (0 / 4x a< < ) 
 ( )I

x AN x R= + .      2 3( )III
x AN x R P P= + + − . 

 

 II–II   (0 x b< < )      IV–IV   (0 3 / 4x a< < ) 
 2( )II

x AN x R P= + + .     2 3 4( )IV
x AN x R P P P= + + − − . 
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Fig. 1 
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Corresponding elongations of the portions are: 

 ( )( )
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AB
N x cl

AE
∆ = ;   ( )( )

2

II
x

BC
N x bl

AE
∆ = ;   

1( )
4

III
x

CD

N x a
l

AE

 
 
 ∆ = ;   

3( )
4

IV
x

DE

N x a
l

AE

 
 
 ∆ = ; 

 2 2 3 2 3 4
5 3 92( ) ( ) ( ) 0
3 4 4A A A AR R P R P P R P P P→ + + + + − + + − − = →  

2 3 4
336080 60 36 27 600 1800 2160 3360 42
80A AR P P P R→ = − + + = − + + = → = = +  kN. 

"+" sign of AR  reaction supports the conclusion that AR  reaction is actually determined to 
the right. After AR  finding, static indeterminacy is opened and normal forces may be 
determined. 
2. Calculating the normal forces in an arbitrary cross-section of each portion. 
 ( ) 42I

x AN x R= = +  kN, 
 2( ) 42 10 52II

x AN x R P= + + = + + =  kN, 
 2 3( ) 42 10 50 2III

x AN x R P P= + − = + + − = +  kN, 
 2 3 4( ) 42 10 50 80 78IV

x AN x R P P P= + − − = + + − − = −  kN. 
The graph of normal force distribution is shown on Fig. 1. 
 
3. Calculating the cross-sectional area A from condition of strength in critical portion.  
Due to [ ] [ ]t cσ σ≠ , it will be necessary to design two conditions of strength – for critically 
tensile and critically compressed portions. In our case,  
(а) for three tensile portions II-II portion is evidently critical after comparing the relations 
42
3A

, 52
2A

 and 2
A

. That is why 

 [ ] [ ]
3

4 2
max 6

( ) ( ) 52 10 1.625 10 m
2 2 2 160 10

II II
II x x

t x t t
t t

N x N xA
A

−×
σ = σ = ≤ σ → = = = ×

σ × ×
; 

 

(b) for compressed portion: 

 [ ] [ ]
3

4 2
max 6

( ) ( ) 78 10 3.9 10 m
200 10

IV IVxIV x
c x сс

c с

N x N xA
A

−×
σ = σ = ≤ σ → = = = ×

σ ×
. 

For future calculating, we should select larger of two cross-sectional areas which will 
satisfy both conditions of strength: 

4 2
max 3.9 10 mсA A −= = × . 

4. Calculating the acting stresses. 
3

4max

( ) 42 10 35.9
3 3 3.9 10

I
I x
x

N x
A −

×
σ = = = +

× ×
 MPa, 

3

4max

( ) 52 10 66.7
2 2 3.9 10

II
II x
x

N x
A −

×
σ = = = +

× ×
 MPa, 
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3

4max

( ) 2 10 5.1
3.9 10

III
III x
x

N x
A −

+ ×
σ = = = +

×
 MPa, 

3

4max

( ) 78 10 200.0 MPa
3.9 10

IV
IV x
x

N x
A −

− ×
σ = = = −

×
. 

Graph of stress distribution is shown on Fig. 1. 
 

5. Analysis of stress state type in an arbitrary point K of critical section. 
 
 
 

IV
3 200 MPa,xσ σ= = −  

 
 

1 2 0.σ σ= =  
Fig. 2 

 

Conclusion: stress state is uniaxial, deformation is tension. 
 

6. Drawing the graph of displacements. 
E point is selected as the origin. The displacements of particular points are designated by 
δ . Therefore, 0Eδ = . Due to Hook's law, the displacement function is linear, that is why 
the displacements of each portion tip are numerically equal to the portion elongation or 
shortening. Elasticity modulus value 112 10 PaE = ×  is used in this calculation. 

 
3

4
11 4max

( )3 78 10 3 3 22.5 10 m 2.25 mm
4 4 2 10 3.9 10

IV
x

D ED
N x al

EA
−

−
− × × ×

δ = ∆ = = = − × = −
× × × ×

. 

 4 4

max

( )22.5 10 22.5 10
4

III
x

C EC ED DC
N x al l l

EA
− −δ = ∆ = ∆ + ∆ = − × + = − × +  

3
4 4 4

11 4
2 10 3 22.5 10 0.19 10 22.31 10 m 2.23 mm

4 2 10 3.9 10
− − −

−
× ×

+ = − × + × = − × = −
× × × ×

. 

 4 4

max

( )22.31 10 22.31 10
2

II
x

B EB EC CB
N x bl l l

EA
− −δ = ∆ = ∆ + ∆ = − × + = − × +  

 
3

4 4 4
11 4

52 10 4 22.31 10 13.33 10 8.98 10 m 0.898 mm
2 2 10 3.9 10

− − −
−

× ×
+ = − × + × = − × = −

× × × ×
. 

 4 4

max

( )8.98 10 8.98 10
3

I
x

A EA EB BA
N x cl l l
EA

− −δ = ∆ = ∆ + ∆ = − × + = − × +  

 
3

4 4 4
11 4

42 10 5 8.98 10 8.97 10 0.01 10 m
3 2 10 3.9 10

− − −
−

× ×
+ = − × + × = ×

⋅ × × ×
. 

Let us estimate the error of calculating, since really the displacement of A point must be 
zero according to compatibility equation:  

4

4
0.01 10 100% 0.11%
8.97 10

∆
−

−
×

= × =
×

. 

Due to negligibly little error, the calculation is true.  
The graph of displacements is also shown on Fig. 1. 

 

point K 

Remaining principal stresses are: 


