## MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

National aerospace university "Kharkiv Aviation Institute"

Department of aircraft strength

## Course Mechanics of materials and structures

## HOME PROBLEM 8

Strength and Rigidity Analysis of Statically Determinate Shaft

Name of student:

Group:

Advisor:

Data of submission:

Mark:

| National aerospace university<br>"Kharkiv Aviation Institute"<br>Department of aircraft strength<br>Subject: mechanics of materials<br>Document: home problem<br>Topic: Strength and Rigidity Analysis of Staticaly Determin<br>Full name of the student, group | nate Shafts                             | Design problem<br>for solid and hollow uniform shafts<br><b>Goal:</b><br>(1) to determine internal torque |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
| Variant: 1 Complexity: 1                                                                                                                                                                                                                                        |                                         | moment in the shaft cross-sections                                                                        |  |  |  |
| <b>Given:</b> thickness ratio $\alpha = d/D = 0.8$ ; $[\tau] = 100$ MPa; $[\psi]$                                                                                                                                                                               | =1 degree/m;                            | and to design the graph of it's distribution (clockwise rotation is                                       |  |  |  |
| $G = 8 \cdot 10^{10}$ Pa; $M_1 = 10$ kNm; $M_2 = 70$ kNm; $M_3$                                                                                                                                                                                                 | = 40  kNm;                              | assumed to be positive):                                                                                  |  |  |  |
| a = 2  m; b = 3  m; c = 4  m.                                                                                                                                                                                                                                   |                                         | (2) calculate the diameter of solid                                                                       |  |  |  |
| Goal:                                                                                                                                                                                                                                                           |                                         | shaft satisfying conditions of strength                                                                   |  |  |  |
| 1) copy from home problem No3 graph of torsional moment                                                                                                                                                                                                         | t distribution;                         | and rigidity;                                                                                             |  |  |  |
| 2) calculate the diameters of solid and hollow shafts u                                                                                                                                                                                                         | using conditions of                     | (3) calculate the diameters of hollow                                                                     |  |  |  |
| strength and rigidity;                                                                                                                                                                                                                                          | shaft satisfying conditions of strength |                                                                                                           |  |  |  |
| 3) draw the graphs of stress distributions in critical sections shafts.                                                                                                                                                                                         | of solid and hollow                     | and rigidity, taking into account                                                                         |  |  |  |
| 4) estimate the type of stress state in an arbitrary point of c                                                                                                                                                                                                 | ritical cross-section                   | thickness ratio $\alpha = d/D = 0.8$ ;                                                                    |  |  |  |
| (selecting yourself solid or hollow shape of a shaft);                                                                                                                                                                                                          |                                         | (4) draw the graphs of stress                                                                             |  |  |  |
| 5) compare the weights of 1 meter-in-length solid and hollow                                                                                                                                                                                                    | w strong shafts;                        | distribution in critical cross-sections                                                                   |  |  |  |
| 6) design the graph of twisting angle distribution for soli                                                                                                                                                                                                     | id or hollow strong                     | of both shafts;                                                                                           |  |  |  |
| shart (select yousen).                                                                                                                                                                                                                                          |                                         | (5) determine the type of stress state                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                 |                                         | in an arbitrary point in critical cross-                                                                  |  |  |  |
| Full name of the lecturer                                                                                                                                                                                                                                       | signature                               | section of solid shaft;                                                                                   |  |  |  |
|                                                                                                                                                                                                                                                                 |                                         | (6) compare the weights of one                                                                            |  |  |  |
| Mark:                                                                                                                                                                                                                                                           |                                         | meter-in-length solid and hollow                                                                          |  |  |  |
|                                                                                                                                                                                                                                                                 |                                         | strong snatts;                                                                                            |  |  |  |

(7) calculate the angles of rotation for solid shaft and design the graph of twisting angle distribution.

## Solution

1. Determine internal torque moments in an arbitrary cross-sections of the shaft applying the method of sections. Corresponding sign conventions are shown on Fig. 1. The shaft is shown on Fig. 2.



| I - I  (0 < x < c)  | $M_x^I(x) = M_3 = 40$ kNm,                                 |
|---------------------|------------------------------------------------------------|
| II-II $(0 < x < b)$ | $M_x^{II}(x) = M_3 - M_2 = 40 - 70 = -30$ kNm,             |
| III-III(0 < x < a)  | $M_x^{III}(x) = M_3 - M_2 + M_1 = 40 - 70 + 10 = -20$ kNm. |

The graph  $M_x(x)$  is shown on Fig. 2.

In result,  $|M_x(x)| = 40$  kNm and I–I section is critical.

|  |  |  | 2 |
|--|--|--|---|



$$\tau_{\max}^{\bigotimes} = \frac{\left| M_{x_{\max}} \right|}{W_{\rho}^{\bigotimes}} \le [\tau] \to D^{\bigotimes} \ge \sqrt[3]{\frac{16 \left| M_{x_{\max}} \right|}{\pi[\tau]}} = \sqrt[3]{\frac{16 \times 40 \times 10^3}{3,14 \times 100 \times 10^6}} = 0,127 \text{ m.}$$

2.2 satisfying the condition of rigidity:

$$\psi_{\max} = \frac{\left|M_{x_{\max}}\right|}{GI_{\rho}} \le \left[\psi\right] \to D^{\textcircled{0}} \ge \sqrt[4]{\frac{32\left|M_{x_{\max}}\right|}{\pi G[\psi]}} \cdot \frac{180}{\pi} = \sqrt[4]{\frac{32 \times 40 \times 10^{3} \times 180}{3,14^{2} \times 8 \times 10^{10} \times 1}} = 0,131 \text{ m}.$$

Finally, the solid shaft diameter is  $D^{\textcircled{0}} = 0,131$  m. Note, it was calculated satisfying the condition of rigidity, i.e.  $y_{\text{max}} = [y]$ .

3. Calculating the diameters of hollow shaft in  $\alpha = d/D = 0.8$ :

3.1 satisfying the condition of strength:  

$$\tau^{\odot} = \frac{|M_{x_{\text{max}}}|}{W_{\rho}^{\odot}} \le [\tau],$$

$$W_{\rho}^{\odot} = \frac{\pi D^{\odot^{3}}}{16} (1 - \alpha^{4}) \rightarrow D^{\odot} = \sqrt[3]{\frac{16|M_{max}|}{\pi[\tau](1 - \alpha^{4})}} = \sqrt[3]{\frac{16 \times 40 \times 10^{3}}{3,14 \times 100 \times 10^{6} \times 0,5904}} = 0,151 \text{ m},$$

$$d^{\odot} = 0,8D^{\odot} = 0,121 \text{ m}.$$

3.2 satisfying the condition of rigidity:  

$$\psi_{\max} = \frac{|M_{\max}|}{GI_{\rho}^{\odot}} \le [\psi] \to I_{\rho}^{\odot} = \frac{\pi D^{4}}{32} (1 - \alpha^{4}) \to D^{\odot} = \sqrt[4]{\frac{32|M_{\max}|}{\pi G[\psi](1 - \alpha^{4})}} \times \frac{180}{\pi} = \frac{4\sqrt{\frac{32 \times 50 \times 10^{3} \times 180}{3.14^{2} \times 8 \times 10^{10} \times 1 \times 0,5904}} = 0,149 \text{ m}, \quad d^{\odot} = 0,8D^{\odot} = 0,119 \text{ m}.$$

Finally, the hollow shaft diameters are  $D^{\odot} = 0,151 \text{ m}$  and  $d^{\odot} = 0,8D^{\odot} = 0,121 \text{ m}$ . Note, they were calculated satisfying the condition of strength, i.e.  $\tau_{\text{max}} = [\tau]$ .

4. Drawing the graphs of stress distribution in critical cross-section for two designed shafts.

4.1 for solid shaft:

$$\tau_{\max} = \frac{M_{x\max}}{W_{\rho}} = \frac{16M_{x\max}}{\pi D^{^{\textcircled{0}3}}} = \frac{16 \times 40 \times 10^3}{3.14 \times (0.131)^3} = 90.7 \text{ MPa.}$$

Note, that  $\tau_{max}$  is less than allowable stress for the shaft material since its diameter was calculated satisfying condition of rigidity, i.e.  $\psi_{max} = [\psi]$ .

4.2 for hollow shaft:

$$\tau_{\max} = \frac{M_{x\max}}{W_{\rho}} = \frac{16M_{x\max}}{\pi D^{\odot 3}(1-\alpha^4)} = \frac{16\times40\times10^3}{3.14\times(0.151)^3(1-0.8^4)} = 100 \text{ MPa.}$$

Note, that  $\tau_{max}$  is equal to allowable stress for the shaft material since its diameters were calculated satisfying condition of strength, i.e.  $\tau_{max} = [\tau]$ .



|  |  | - |   |
|--|--|---|---|
|  |  |   | 5 |

Note, that to compare the weights, we will use the diameters which were determined from conditions of strength. Then

$$\frac{G^{\textcircled{o}}}{G^{\textcircled{o}}} = \frac{0.127^2}{0.151^2 - 0.121^2} = 1.97.$$

Conclusion. Solid shaft is approximately 2 times greater in weight than hollow one due to more effective distribution of material in hollow shaft. This advantage will depend on the thickness ratio  $\alpha$ : increase of  $\alpha$  leads to decrease of hollow shaft weight.

7. Designing the graph of twisting angle distribution for solid shaft. Note, that its diameter is  $D^{(0)} = 0.131$  m.

To design the graph, we will use the formula

 $\varphi(x) = \frac{M_x(x)}{GI_{\rho}} = kx$  – linear function of the shaft length.

Also, angles of twist for *C*, *B*, *A* cross-sections we will calculate relative to reference *D*-section:

$$\begin{split} \varphi_{C} &= \varphi_{DC} = \frac{M_{x}^{III}a}{GI_{\rho}} = \frac{-20 \times 10^{3} \times 2 \times 32}{8 \times 10^{10} \times 3.14 \times 0.131^{4}} = -1.73 \times 10^{-2} \text{ rad.} \\ \varphi_{B} &= \varphi_{DB} = \varphi_{DC} + \varphi_{CB} = \varphi_{DC} + \frac{M_{x}^{II}b}{GI_{\rho}} = -1.73 \times 10^{-2} + \frac{-30 \times 10^{3} \times 3 \times 32}{8 \times 10^{10} \times 3.14 \times 0.131^{4}} = \\ &= -1.73 \times 10^{-2} - 3.89 \times 10^{-2} = -5.62 \times 10^{-2} \text{ rad.} \\ \varphi_{A} &= \varphi_{DA} = \varphi_{DB} + \varphi_{BA} = \varphi_{DB} + \frac{M_{x}^{I}c}{GI_{\rho}} = -5.62 \times 10^{-2} + \frac{40 \times 10^{3} \times 4 \times 32}{8 \times 10^{10} \times 3.14 \times 0.131^{4}} = \\ &= -5.62 \times 10^{-2} + 6.92 \times 10^{-2} = +1.30 \times 10^{-2} \text{ rad.} \end{split}$$

Corresponding graph is shown on Fig. 2.

|  |  |  |  |  | 6 |  |
|--|--|--|--|--|---|--|