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Given: 10 kN/mq = , 20 kNmM = , 
30 kNP = , 2 ma = , 4 mb = , 
2 mc = , [ ] 160МПаtσ = , 

[ ] 200 MPaсσ = , / 2h b = . 
Note 1. Stress analysis is possible 
only after calculation of internal 
forces in cross-sections of the beam. 
Note 2. In shear force calculating, we 
will use the rule that internal shear 
force in particular cross-section 
numerically equals to algebraic sum 
of external forces projections on z 
axis, but only for the forces applied 
to the left or to the right part of the 
beam. 
 In bending moment calculating, we 
will use the rule that internal bending 
moment in particular cross-section 
numerically equals to algebraic sum 
of external force moments, but only 
for the forces and moments applied to 
the left or to the right part of the 
beam.  

 
 

 Solution 
 
1. Sign conventions: 
а) for shear forces (Fig. 1)     b) for bending moments (Fig. 2) 
 

 
 
 
 
 
 
 
 
 

 
Fig. 1          Fig. 2 

 

2. Calculating the reactions in supports AR  and CR  (see Fig. 3). Let us direct preliminary 
these reactions upwards, since their actual direction are unknown. Plus sign in solution 
will mean that really these reactions are directed upwards. Secondly, to determine AR  and 

CR , we will use both equations of momentum balance (for example, relative to C and A 
points). Third equation of the force equilibrium will be used to check the result accuracy. 
In writing the equations of the moment balance, clockwise rotation will be assumed to be 
positive. 
 

 

 

0m m
yM − > 0m m

yM − <0m m
zQ − < 0m m

zQ − >
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Fig. 3 
 

2
0 ( ) ( ) ( )

2 2A C
qa aM M R a b qa b c P a b c= = + − − + − + + + + +∑ , 

21 ( ) ( ) 16,67 kN
2 2C

qa aR M qa b c P a b c
a b

 
= − + + + + − + + = +  +  

. 

2
0 ( ) ( )

2 2С A
qс aM M R a b qa b Pc= = − − + + − + +∑ , 

21 ( ) 13,33 kN
2 2A

qc aR M qa b Pc
a b

 
= + + + + − = +  +  

. 

0 13,33 16,67 10 2 10 2 30 0z A CP R R qc qa P= = − − − + + = − − − × + × + =∑ . 
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3. Determining the shear forces and bending moments in an arbitrary cross-sections of the 
beam. Two potions will be considered from the left and the last one from the right to get 
the simplest shape of equations. 
 
 I – I   0 x a< < : 
 0 2( ) | 13,33 | 13,33 20 6,67I

z A x xQ x R qx = == − = = − = −  kN, 

 
2

0 2( ) | 0 | 26,66 20 6,66
2

I
y A x x

qxM x R x = == − = = − =  kNm. 

 
Note, that the change of shear force sign within this potion boundaries really means the 
presence of extreme value of internal bending moment within the boundaries of the potion. 
First of all, let us determine the coordinate of the cross-section with extreme bending 
moment. For this purpose, let us equate to zero the shear force equation: 
 
 ( ) 0 13.33 10 ,I

z e A e eQ x R qx x= = − = −    1.33 mex =  (see Fig. 3). 
 
Substituting this coordinate into bending moment equation leads to the following value: 
 

 
max

2
210( ) 13.33 1.33 1.33 8,89

2 2
I I e

y e A ey
qxM M x R x= = − = × − × = +  kNm. 

 
 II – II   0 x b< < : 
 ( ) 13.33 20 6.67II

z AQ x R qa= − = − = −  kN, 

 0( ) ( ) | 26.66 20 20
2

II
y A x

aM x R a x qa x M =
 = + − + − = − − = 
 

 

 413.34 | 79.98 100 20 40x== = − − = −  kNm. 
 
 III – III   0 x c< < : 
 0 2( ) | 30 | 30 20 10III

z x xQ x P qx = == − = = − =  kN, 

 
2

0 2( ) | 0 | 60 20 40
2

III
y x x

qxM x Px = == − + = = − + = −  kNm. 

 
4. Designing the shear force and bending moment graphs. For shear force graph positive 
values will be drawn upwards and vice versa. The bending moment graph will be drawn  
on tensile fibers (see Fig. 2). 

 
 In design problem solution, we will omit the shear forces due to their negligible 
influence on prismatic beam strength. In such case, we will determine critical section as 
the section with maximum magnitude of bending moment. In our problem, this cross-
section is situated on the right support: 
 

max
40yM =  kNm. 
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5. Calculating the sectional modulus . .n aW  from condition of strength in critical cross-
section: 

 [ ]max
max

. .
.

y

n a

M

W
σ σ= ≤   

Note. In the case when allowable stresses are different in tension and compression, 
lesser value of allowable stress should be used in condition of strength, i.e. 
[ ] 160 MPatσ = . Then  

max
3

6 3
. . 6

40 10 250 10 m
[ ] 160 10

y
n a

t

M
W

σ
−⋅

= = = ×
⋅

. 
 

6. Selecting the I-beam section number from the assortment. 
(a) let us chose, at first, lesser number No.22 with 6 3

. . 232 10 mn aW −= × : 

 
3

max 6
40 10No.22 172.4

232 10
σ −

×
→ = =

×
 MPa. 

This number will be evidently overstressed but five percent overstress is available in 
mechanics of materials. It's calculating shows, that 

 [ ]
[ ]

max 172.4 160100% 100% 7.5%
160

σ σ
∆

σ
− −

= × = × = . 

Since overstress is more than 5%, No.22 is not applicable. Therefore, larger number 
should be selected: No.22a  with 6 3

. . 254 10 mn aW −= × . Maximum normal stress in this I-

beam section is 
3

max 6
40 10 157.48

254 10
σ −

×
= =

×
 MPa.  

For further calculation, copy from the assortment the following dimensions and 
geometrical properties of No.22a  section: 

222 10h −= ×  m,    212 10b −= ×  m,   20.89 10t −= ×  m,   20.54 10d −= ×  m,  
8 42790 10 myI −= × ,  6 3254 10 myW −= × ,  6 3143 10 myS∗ −= × ,  4 232.8 10 mIA −= × . 

Note that y-axis is horizontal central axis for the section, which is really neutral axis in 
vertical bending. This section is shown on Fig. 4. 
(b) design the graph of stress distribution in critical section under 

max
40 kNmyM =  and 

10 kNzQ =  loading: 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 
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To determine shear stresses and draw correspondent graph of their distribution, we will 
use the Juravsky formula. Knowing the stresses in three points: 1T  (outer point of the 
flange), 2T  (flange-web connection), 3T  (point of neutral axis), it becomes possible to 
draw parabolic graph of stress distribution. 

 1 0τ = . 
2 2

3 2 2

2( ) 2 8

22 10 0.89 1010 10 12 10 0.89 10
2 22 2

12 10 2790 10

z
flange

y

h tQ bt

bI
τ

− −
− −

− −

 × ×  × × × × × − −   
   = = =

× × ×
 

 0.34=  MPa. 
Note, that the flange width b was introduced into the Juravsky formula as the width of 
corresponding layer of the section. 

2 2
3 2 2

2( ) 2 8

22 10 0.89 1010 10 12 10 0.89 10
2 22 2

0.54 10 2790 10

z
web

y

h tQ bt

dI
τ

− −
− −

− −

 × ×  × × × ⋅ × − −   
   = = =

× × ×
 

 7.48=  MPa. 
Note, that the web width d was introduced into the Juravsky formula as the width of 
corresponding layer of the section since this point belongs to the web. 

 
3 6

3 max 2 8
10 10 178 10 11.81

0.54 10 2790 10
z y

y

Q S
dI

τ τ
∗ −

− −
× × ×

= = = =
× × ×

 MPa. 

Note, that the yS∗  value is the first moment of half-section relative to neutral axis of the 
section. It was preliminary found from assortment. 
 

(c) analysis of the stress state type in 1T , 2( )webT , 3T  points of critical section  
(see Fig. 5, 6, 7): 

Point 1T . 
 

 
 
 
 
 
 

Fig. 5 
Conclusion 1: deformation is tension. 
Conclusion 2: stress state is uniaxial. 

 

Point 2( )webT . 
      
 
 
 
 
 

 
Fig. 6 

 

Remaining principal 
stresses are: 2 0σ = , 

3 0σ =  
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max

2

2
3 2

( ) 8

22 1040 10 0.89 10
22 144.95

2790 10

y
T web

y

hM t

I
σ

−
−

−

 ×  × − × −   
   = = =

×
 MPa, 

 
2 ( ) 7.48T webτ =  MPa. 

To determine the stress-state type, let us determine principal stresses and the angle of 
principal planes inclination. The following formulae will be used for this purpose: 

 ( )2 2
max
min

1 4
2 2

α β
α β α

σ σ
σ σ σ τ

+
= ± − + , 

22 ptg α

β α

τ
α

σ σ
=

−
. 

Since the condition α βσ σ>  was assumed in these formulae proof, let us re-designate the 
stresses: 

2 ( ) 144.95 MPaT webασ σ= = + , 
0βσ = , 

2 ( ) 7.48 MPaT webατ τ= = + , 
7.48 MPaβ ατ τ= − = − . 

Then 

( ) ( )2 22 2
max
min

1 144.95 0 14 144.95 0 4 7.48
2 2 2 2

α β
α β α

σ σ
σ σ σ τ

+ +
= ± − + = ± − + × . 

 max 1145.34 MPaσ σ= + = , 
 min 30.39 MPaσ σ= − = , 

Checking the invariability of normal stresses sum in rotation of axes:  
1 3 144.95 0 145.34 0.39α βσ σ σ σ+ = + → + + = + − . 

Calculation of the principal planes inclination: 

 2 2( 7.48)tg2 0.1032
0 144.95p

α

β α

τ
α

σ σ
+

= = = −
− −

, 

 02 5.9 2.95pα α= − ° → = − °  (clockwise rotation). 
Conclusion: stress state is plane (biaxial) (see Fig. 6). 

 
Point 3T . 

 
 
 
 
 

 
Fig. 7 

 

In this case, 
3

0Tσ =  MPa, 
3 max 11.81Tτ τ= =  MPa. 

Conclusion: deformation type is pure shear, stress state is plane (biaxial) (see Fig. 7). 
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Calculation of principal stresses and the angle of principal planes inclination. 

 ( )2 2
max
min

1 4
2 2

α β
α β α

σ σ
σ σ σ τ

+
= ± + + , 

Since the condition α βσ σ>  was assumed in these formulae proof, let us re-designate the 
stresses: 
 0α βσ σ= = , 

3
11.81 MPaTατ τ= + = + , 11.81 MPaβ ατ τ= − = − . 

After substituting, 
 max 111.81 MPaασ τ σ= + = + = , 

min 311.81 MPaασ τ σ= − = − = , 
 2 0σ = . 

Calculation of the principal planes inclination: 
2 2( 11.81)tg2

0 0p
α

β α

τ
α

σ σ
+

= = = −∞
− −

, 2 90pα = − ° , 45pα = − °  (clockwise rotation) 

Principal stresses are shown on Fig. 7. 
Conclusion: stress state is biaxial, deformation is pure shear. 

 

7. Calculating the round cross-section diameter. 
(а) it was found earlier from the condition of strength that 6 3250 10 myW −= × . On the 
other hand,  

 
3 6

233
32 32 250 10 13.66 10

32 3.14
y

y
WDW Dπ
π

−
⊗ −× ×

= → = = = ×  m. 

(b) cross-sectional area is 

 
2 2 2

4 23.14(13.66 10 ) 146.48 10 m
4 4
DA π −

⊗ −×
= = = × . 

Note, that this area is significantly more than the area of corresponding I-beam 
section: 4 232.8 10 mA −= × . 
(c) draw the graphs of stress distribution in critical section: 
 

 
Fig. 8 

 

 max
3

max 3 2 3
32 32 40 10 160

3.14 (13.66 10 )
yM

D
σ

π −
× ×

= = =
× ×

 MPa, 
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3

max 4
4 4 10 10 0.91
3 3 146.48 10

zQ
A

τ −
× ×

= = =
× ×

 MPa. 
 

8. Calculating the dimensions for rectangle cross-section. 
Let us assume, that / 2h b = . 
(а) from condition of strength the sectional modulus should be equal to 

6 3250 10 myW −= × . From the other hand, 
2

6y
bhW = . After substituting 2h b= , we get 

3
6 34 250 10 m

6
b −= × , 

 
6

233 3 3 250 10 7.22 10
2 2

yW
b

−
−× ×

≥ = = ×  m, 

 214.44 10h −= ×  m. 
(b) calculation of cross-section area:  

 4 2104.26 10 mA bh −= = × . 
Note, that this area is less than the area of round section but more than the area of I-
beam section. 
(c) draw the graphs of stress distribution in critical section: 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 9 
 

 
( )

max
3

max 2 22 2

6 6 40 10 160
7.22 10 14.44 10

yM

bh
σ

− −

× ×
= = =

× × ×
 MPa, 

 
3

max 4
3 3 10 10 1.44
2 2 104.26 10

zQ
A

τ −
× ×

= = =
× ×

 MPa. 
 

9. General conclusions: 
 a) ID h h⊗ < <W  2 2 2(13.66 10 m 14.44 10 m 22 10 m)− − −× < × < × ; 

 b) I
max max maxσ σ σ⊗ = ≅W  (160 MPa 160 MPa 157.48 MPa)= ≅ ; 

 c) I
max max maxτ τ τ⊗ < W =  (0.91MPa 1.44 MPa 11.81MPa)< = ; 

 d) IA A A⊗ > >W  4 2 4 2 4 2(146.48 10 m 104.26 10 m 32.8 10 m )− − −× > × > × . 


