MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

National aerospace university “Kharkiv Aviation Institute”

Department of aircraft strength

Course
Mechanics of materials and structures

HOME PROBLEM 9

Stress Analysis of Two Supported Beams in Plane Bending

Name of student:
Group:

Advisor:

Data of submission:

Mark:




National aerospace university
“Kharkiv Aviation Institute”
Department of aircraft strength
Subject: mechanics of materials

Document: home problem
Topic: Stress Analysis of Two Supported Beams in plane Bending.

Full name of the student, group

Variant: 1 Complexity: 1

Given: [G]t =160 MPa; [O‘]C =200MPa; h/b=2 for rectangle cross-section.

Goal:
1) copy from home problem No5 the graphs of shear forces and bending
moments ;

2) using condition of strength in pure bending calculate: a) diameter of round
solid cross-section; b) diameters of hollow tube cross-section using thickness
ratio a=d/D=0,8; c¢) dimensions of rectangle solid cross-section in
h/b=2; d) dimensions of hollow rectangle cross-section inH/h=2;
B/b=2;e) number of I-beam section;

3) compare the weights of 5 cross-sections mentioned in p. 2;

4) design the graphs of acting stresses in cross-section with the largest shear
force for 5 cross-sections mentioned in p.2;

5) estimate the type of stress state in the following points of I-beam section: a)
lying on neutral axis; b) belonging to the most tensile or compressed layers of
the section (choose yourself); ¢) in the point of the flange and web connection
(one of two existing connections). Note, that the point must belong to the web.
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Solution

1. Sign conventions:
a) for shear forces (Fig. 1)

Given: g=10kN/m, M =20kNm,
P=30kN, a=2m, b=4m,
c=2m, [s ] =160 MI]a,
[s]. =200MPa, h/b=2.

Notel. Stress analysis is possible
only after calculation of internal
forces in cross-sections of the beam.
Note 2. In shear force calculating, we
will use the rule that internal shear
force in particular cross-section
numerically equals to algebraic sum
of external forces projections on z
axis, but only for the forces applied
to the left or to the right part of the
beam.

In bending moment calculating, we
will use the rule that internal bending
moment in particular cross-section
numerically equals to algebraic sum
of externa force moments, but only
for the forces and moments applied to
the left or to the right part of the
beam.

b) for bending moments (Fig. 2)
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2. Calculating the reactions in supports Ry and R- (see Fig. 3). Let us direct preliminary

these reactions upwards, since their actual direction are unknown. Plus sign in solution
will mean that really these reactions are directed upwards. Secondly, to determine R, and

Rc, we will use both equations of momentum balance (for example, relative to C and A

points). Third equation of the force equilibrium will be used to check the result accuracy.
In writing the equations of the moment balance, clockwise rotation will be assumed to be

positive.
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3. Determining the shear forces and bending moments in an arbitrary cross-sections of the
beam. Two potions will be considered from the left and the last one from the right to get
the simplest shape of equations.

| -1 O<x<a:
Q) (X) = Ra - OX|y=0=13,33]4=»=13,33- 20=- 6,67 kN,

2
M} (%) = Rax- %|X=O:O|X=2:26,66- 20=6,66 kNm.

Note, that the change of shear force sign within this potion boundaries really means the
presence of extreme value of internal bending moment within the boundaries of the potion.
First of all, let us determine the coordinate of the cross-section with extreme bending
moment. For this purpose, let us equate to zero the shear force equation:

Q) (%) =0=Ra- qx =13.33- 10%,, ¥, =1.33m (see Fig. 3).
Substituting this coordinate into bending moment equation leads to the following value:

2
M! =M (%) = Raxe- 221333 133- 22 1.332 = 48,89 kKNm.
Ymax 2 2

I1-I 0<x<Db:
Il (x)= Ry - ga=13.33- 20=- 6.67 kN,

a5
My (X) = Ra(a+x)- qag, + X M |y=0=26.66- 20- 20 =
=13.34|y—4=79.98- 100- 20=- 40 kNm.

[ =111 O<x<c:
M (%) =P~ gXlyeg=30],2»=30- 20=10 kN,
Il gx°
My (X) =- PX+7IX:0=OIX=2:-6O+20:-4O KNm.

4. Designing the shear force and bending moment graphs. For shear force graph positive
values will be drawn upwards and vice versa. The bending moment graph will be drawn
ontensilefibers (see Fig. 2).

In design problem solution, we will omit the shear forces due to their negligible
influence on prismatic beam strength. In such case, we will determine critical section as
the section with maximum magnitude of bending moment. In our problem, this cross-
section is situated on the right support:

‘Mymax‘:40 kNm.




5. Calculating the sectional modulus W, 5 from condition of strength in critical cross-
section:

smaX:‘Mymax‘g[s].

n.a.
Note. In the case when allowable stresses are different in tension and compression,
lesser value of allowable stress should be used in condition of strength, i.e.
[s ]t =160 MPa. Then

My _ 4040°

[s}y  160x0°
6. Selecting the I-beam section number from the assortment.
(a) let us chose, at first, lesser number No.22 with W,, ; =232" 10° 5 m3:

s 103
N0.22® S ax =40—106 =172.4 MPa.
232" 107
This number will be evidently overstressed but five percent overstress is available in
mechanics of materials. It's calculating shows, that

S -|S 4 - ,
D =M [ ]'100%:% 100% = 7.5%.

[s]
Since overstress is more than 5%, No.22 is not applicable. Therefore, larger number
should be selected: No.222 with W, , =254" 10° ® m3. Maximum normal stress in this I-
- 103
beam section is S gy =40—106 =157.48 MPa.
2547 10 _ _ _
For further caculation, copy from the assortment the following dimensions and
geometrical properties of N0.222 section:
h=22"10%m, b=12"10%m, t=089 102 m, d=054" 102 m,
ly=2790" 10 % m*, W, =254"10°m?, S,=143"10°m?, Al =328" 10" m*.
Note that y-axis is horizontal central axis for the section, which is really neutral axis in
vertical bending. This section is shown on Fig. 4.
(b) design the graph of stress distribution in critical section under ‘M . ‘ =40kNm and

[Q,| =10kN loading:

W, = =250" 10" m3.
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To determine shear stresses and draw correspondent graph of their distribution, we will
use the Juravsky formula. Knowing the stresses in three points: T, (outer point of the

flange), T, (flange-web connection), T3 (point of neutral axis), it becomes possible to
draw parabolic graph of stress distribution.

t1=0.
. c a0 2 car20
opt& . 10 10°10% 127 10°2" 0.89° 102422 107 0891077
t2(flange) = 82 25 2 2 5.
(flange bl'y 12°10°2° 2790 10°8
=0.34 MPa.

Note, that the flange width b was introduced into the Juravsky formula as the width of
corresponding layer of the section.

. 10 2 car 20
opt® . 18 10" 10% 127 10'2>0.89° 10222 107 0891077
t2 eb = ’ 82 Zﬂ: 2 2 b:

W™ 054" 10°2" 2790" 10°®

=7.48 MPa.
Note, that the web width d was introduced into the Juravsky formula as the width of
corresponding layer of the section since this point belongs to the web.

{22t g = QSy _10710% 178" 10°°
dy 054 102" 2790 10°®
Note, that the S;, value is the first moment of half-section relative to neutral axis of the
section. It was preliminary found from assortment.

=11.81 MPa

(c) analysis of the stress state type in Ty, Towen), T3 points of critical section

(seeFig. 5, 6, 7):
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To determine the stress-state type, let us determine principal stresses and the angle of
principal planes inclination. The following formulae will be used for this purpose:

_Sa *Sp 1\/ 2 x2
S =—*+ /IS5 - S +4t 5,

2 a
P7S b-Sa
Since the condition s; >s |, was assumed in these formulae proof, |et us re-designate the

o =144.95 MPa,

ST,(web) =

tg2a

stresses.
Sa =S T, (web) =+144.95MPa,

Sp =0,

ta =tr,(wep) =+7-48MPa,

tp =-ty =-7.48MPa.
Then

=2 "5 1\/(Sa Ssp) a2 -14495+0, W 144.95- 0)° +4° 7.48°.

S —__
e 2 2 2
S max = T145.34MPa=s 1,
S min =-0.39MPa=s 3,
Checking the invariability of normal stresses sum in rotation of axes:
Sag tSp =S1ts3 ® +144.95+0=+145.34- 0.39.

Calculation of the principal planesinclination:

tg2a 2o _ 24748 _ (4032,
P s, -s, 0-14495

2a,=-59"® ag=-295° (clockwise rotation).
Conclusion: stress stateis plane (biaxial) (see Fig. 6).
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Inthiscase, s1, =0 MPa, t, =t pa =11.81 MPa
Conclusion: deformation typeis pure shear, stress stateis plane (biaxial) (see Fig. 7).




Calculation of principal stresses and the angle of principa planesinclination.
Sa *Sp 1\/ 2, .2
S =————+—.[|s; +S +4 5,
mﬁ)‘( 2 2 ( a b) a
Since the condition s ; >s, was assumed in these formulae proof, let us re-designate the
stresses:
Sa =Sp =0,t5 =+, =+11L.81MPa, t =-t5 =-11.81MPa.
After substituting,
Smax = Ha =+t11.81MPa=s4,
Smin =-ta =-11.81MPa=s 3,
So =0.
Calculation of the principal planes inclination:
+ . .
tg2a , = 2a = 2(+11.8]) =-¥,2a,=-90°, a =-45° (clockwise rotation)
Sp-Sa 0-0

Principal stresses are shown on Fig. 7.
Conclusion: stress stateisbiaxial, deformation is pure shear.
7. Calculating the round cross-section diameter.
(a) it was found earlier from the condition of strength that W, = 250" 109 m3. on the
other hand,

A 3 320, © 250" 1076
e —PD” o p=g>Y =§/32 250 10~ 13667102 m.
32 V p 3.14

(b) cross-sectional areais

.. 2 . -2\2
AR = pIZ 31401366 10 )" _ 14548”1074 m2.

Note, that this area is significantly more than the area of corresponding I-beam
section: A=32.8" 104 m?.
(c) draw the graphs of stress distribution in critical section:
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8. Calculating the dimensions for rectangle cross-section.
Let us assume, that h/b=2.
(a) from condition of strength the sectional modulus should be equal to

2
Wy, = 250" 10" ® m3. From the other hand, W, —% After substituting h=2b, we get

=0.91 MPa

tmax

3
407 _ o507 1076
6
AN, . s a6
b3 23’=1\’>/3 250 10 =722" 102 m,

h=14.44" 10" % m.
(b) calculation of cross-section area:

A=bh=104.26" 10" * m?.
Note, that this area isless than the area of round section but more than the area of |-
beam section.

(c) draw the graphs of stress distribution in critical section:
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9. General conclusions:

a) DA <hV <h' (1366’ 102 m<14.44" 102 m<22" 102 m);

b) sh max =s W max @5 max (160 MPa=160 MPa @57.48 MPa);

Q) thay <th =tl_ (0.91MPa<1.44MPa=11.81MPa);

d) A > AV > Al (146.48° 104 M2 >104.26" 1074 m? >32.8° 1074 m?).

=1.44 MPa.

tmax




