
 
 
 
 

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE 
 

National aerospace university “Kharkiv Aviation Institute” 
 

Department of aircraft strength 
 
 
 
 
 
 
 
 
 
 
 

Course 
Mechanics of materials and structures 

 
HOME PROBLEM 10 

 
Stress Analysis of Rod System in Combined Loading 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name of student:      
 

Group:       
 

Advisor:       
 

Data of submission:      
 

Mark:        
 
 
 
 
 
 
 
 



 

 2 

Given: 
q=10kN/m, 
P=20kN, 
M=10kNm, 
a=2m,   b=3m,   c=4m, 
[ ] 160MPaσ = . 
 
Goal: 
(1) To write the equations of internal 
forces and moments in an arbitrary 
cross-sections of the rod system and 
draw the graphs of their distribution 
along the length of the rod. 
(2) For the last portion:  
a) calculate the diameter of round 
solid cross-section; 
b) calculate dimensions of rectangle 
solid cross-section in / 2h b = . 
Note. In this design problem 
solving, principle of superposition 
will be applied to estimate total 
effect of different internal forces on 
the stress state of potentially 
critical points of critical cross-
section. 
 

Solution 
1. Sign conventions for internal forces and moments are the following (see Fig. 1): 
a) for shear forces:      b) for normal forces: 
 
 
 
 
 
 
 
 
 

 
 

 
c) for bending moments: 

In the case of coincidence of the rod 
curvature with corresponding axis 
(y or z), the bending moment will be 
assumed as positive. The graphs of 
bending moments ( )yM x  generated 
by vertical forces will be drown on 
tensile (+) fibers as well as bending 
moments ( )zM x  generated by 
horizontal forces. 
 

 

( ) 0;m m
y zM − <( ) 0;m m

y zM − >

( ) 0 ;m m
z yQ − <( ) 0 ;m m

z yQ − > 0;m m
xN − > 0;m m

xN − <

Fig. 1 
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2. Writing the equations of internal forces in an arbitrary cross-sections of the portions and 
drawing their graphs. 

 
 
 I–I   0 , 2 mx a a< < =  
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 II–II   0 , 3 mx b b< < =  
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 III–III   0 , 4 mx c c< < =  

( ) 20 kN,III
xN x P= − = −  

Fig. 2 
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0 4
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3. Drawing the graphs (see Fig. 3): 
 

 
Fig. 3 
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4. Checking the solution, i.e. checking the equilibrium in the angular parts of the rod system 
(see Fig. 4). 

 
 

 
 

Fig. 4 
 
Since the angles are in equilibrium, the internal forces are determined correctly. 
 
5. Calculating the diameter of round solid cross-section for the last potion 
 First of all, let us determine the critical cross-section basing on the analysis of yM  
and zM  moments distribution. In our case, all cross-sections are equicritical since internal 
forces are constant throughout the last portion length. After omitting shear forces yQ  and 

zQ , remaining four internal forces are the following:  

20 kNxN = , 10 kNmxM = , 20 kNmyM = , 60 kNmzM = . 
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They are applied to the critical section as shown in the Fig. 5: 
 

         
Fig. 5 

Due to polar symmetry of cross-section it is possible to describe two bending moments 
yM  and zM  by resultant bending moment BM  and determine unique critical point A in 

the section: 
2 2 2 220 60 4000 63.245 kNm.B y zM M M= + = + = =  

Before writing the condition of strength in this point to solve design problem and 
determine the diameter it is necessary to estimate its stress state (see Fig. 6):  

 
       Fig. 6 

.
. .

x B
p A

n a

N M
A W

σ = + ,        . .2 n aW Wρ = ,        .
. .2

x x
p A

n a

M M
W Wρ

τ = = . 

Since stress state is biaxial, we should use the corresponding strength theory, for example, 
the maximum shear stress theory: 

[ ]2 2
( . ) 4III

eq p Aσ σ τ σ= + ≤ ,    [ ]
22

( . )
. .

4III x xB
eq p A

n a

N MM
A W Wρ

σ σ
  

= − + ≤       
. 

In the first approach, we will ignore ( )xNσ . Simplified condition of strength becomes the 
following: 

[ ]
22

( . ) 2 2
. .

4III xB
eq p A

n a

MM
W Wρ

σ σ= + ≤ , or [ ]
2 2 2

. .

y z x

n a

M M M

W
σ

+ +
≤ . 

Let us denote  
2 2 2 2 2 210 20 60 64.03 kNmy z xM M M MΣ = + + = + + = . 
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Resultant condition of strength is  

 [ ]( . )
. .

III
eq p A

n a

M
W

Σ
σ σ= ≤ . 

 
[ ]

3
3. . 6

32 64.03 3 10 0.16 m
3.14 160 10

n a
MW D

Σ

σ
× × ×

≥ → ≥ =
× ×

. 

 
In the second approach, check the point A overstress using complete condition of strength: 
 

22

( . ) 2 3 3
4 1632 4III x xB

eq p A
N MM
D D D

σ
π π π

     = + + =        
 

2 23 3 3
6

2 3 3
4 20 10 32 63.24 10 16 10 104 160.20 10 Pa 160.20 MPa
3.14 0.16 3.14 0.16 3.14 0.16

   × × × × × ×
= + + = × =      × × ×   
. 

Estimate the overstress: 
 

[ ]
[ ]

160.20 160100% 100 0.125%
160

eqσ σ
∆σ

σ

− −
= × = × = . 

 
So, the overstress is within the accepted limit of 5%. 
 
6. Calculation of rectangle cross section dimensions. 
(a) determining the potentially critical cross-sections. 
In this case of loading, the internal forces are constant throughout the length of the last 
portion. So, in an arbitrary section, 
 

10 kNmxM = , 20 kNmyM = , 60 kNmzM = , 20 kNmxN = . 
 
Let us orient the cross section this way because zM  is larger than yM  to design more 
effective section in strength-to-weight ratio (see Fig. 7): 

 
Fig. 7 
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(b) drawing the graphs of stress distributions (see Fig. 8): 

 
Fig. 8 

 

(c) determining the potentially critical points. 
In this case of loading, ,A B  and C points are potentially critical after analysis of stress 
distributions (see above). We will write the conditions of strength in these points and 
calculate three pairs of dimensions to select the largest pair. 
(d) conditions of strength in potentially critical points of the section (see Figs 9, 10, 11). 

Point A 
 

( ) ( ) ( )max maxA x y zN M Mσ σ σ σ= + + , 

0Aτ = . 
 

                      Fig. 9 
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Stress state is uniaxial and condition of strength is [ ]maxσ σ≤ : 

[ ]max
yx z

y z

MN M
A W W

σ σ= + + ≤ , 

        [ ]2 2 2 3 3
6 36 3

2 2
y yx xz zM MN NM M

bh hb bh b b b
σ+ + = + + ≤ . 

In the first approach, we will ignore ( )xNσ  and write simplified condition of strength: 

[ ]3 3
3 3

2
y zM M

b b
σ+ ≤ ,    

[ ]
3 3

33 6
3 3 / 2 3 20 10 3 60 10 / 2

160 10
y zM M

b
σ

+ × × + × ×
≥ = =

×
 

3 30.9375 10 0.098 m−= ⋅ = . 
In the second approach, we check the overstress at the point A: 

max 2 3 3
3 3

2 2
yx zMN M

b b b
σ = + + 3(1041.233 64.75 95623.422) 10= + + × =

 6161.41 10 Pa 161.41MPa= × = . 
Estimate the overstress 

[ ]
[ ]

max 160.41 160100% 100% 0.26%
160

σ σ
∆σ

σ
− −

= ⋅ = × = . 

Conclusion: overstress is within the accepted limit of 5%. 
 
Point B 
 

 
Fig. 10 

 

2 3
3

2 2
x xz z

B
z

N NM M
A W b b

σ = + = + ,      '
max 32

x x
B

t

M M
W b

γ γ
τ τ

α
= = = . 

 
Stress state is plane and for condition of strength designing we will use corresponding 
strength theory. 

[ ]2 2
( . ) 4 ;III

eq p Bσ σ τ σ= + ≤  

[ ]
2 2

( . ) 2 3 3
3 4

2 2 2
III x xz
eq p B

N MM
b b b

γ
σ σ

α

   
= + + ≤   

   
. 
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In the first approach, we will ignore the ( )xNσ  component: 

( ) ( )
[ ]

( ) ( )2 23 322
33

6

3 60 10 / 2 4 0.795 10 10 /(2 0.246)3 / 2 4 / 2

160 10
z xM M

b
γ α

σ

× × + × × ×+
≥ = =

×
 

0.084 m= . 
In the second approach, we estimate the point B overstress: 

2 2

( . ) 2 3 3
3 4

2 2 2
III x xz
eq p B

N MM
b b b

γ
σ

α

   
= + + =   

   
 

( ) ( ) ( )

2 2
3 3 3

2 3 3
20 10 3 60 10 0.795 10 104

2 0.084 2 0.084 2 0.246 0.084

   × × × × ×   = + +
   × × × ×   

162.65 10= × =

6162.67 10 Pa 162.67 MPa= × = . 

Overstress 
[ ]

[ ]
( . ) 100% 1.67%

III
eq p Bσ σ

∆σ
σ

−
= × = . 

So, the overstress is within accepted 5% limit. 
 

Point C 

 
Fig. 11 

2 3
3

,
2

y yx x
c

y

M MN N
A W b b

σ = + = +       max 3 .
2

x x
c

t

M M
W b

τ τ
α

= = =  

Stress state is plane and we will use corresponding strength theory to write condition of 
strength: 

[ ]2 2
( . ) 4 ,III

eq p Cσ σ τ σ= + ≤  

[ ]
2 2

( . ) 2 3 3
3

4
2 2

yIII x x
eq p C

MN M
b b b

σ σ
α

   
= + + ≤   

  
. 

In the first approach, we will ignore ( )xNσ  component to simplify the condition of 
strength. In result, 

( ) ( )
[ ]

2 2
3 3 4 2y xM M

b
α

σ

+
≥

( ) ( )2 23 3
3

6

3 20 10 4 10 10 /(2 0.246)
0.077 m

160 10

× × + × ×
= =

×
. 
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In the second approach, we estimate the overstress at point C applying full condition of 
strength: 

2 2

( . ) 2 3 3
3

4
2 2

yIII x x
eq p C

MN M
b b b

σ
α

   
= + + =   

  

( ) ( ) ( )

2 2
3 3 3

2 3 3
20 10 3 20 10 10 104

2 0.077 0.077 2 0.246 0.077

   × × × ×   = + + =
   × × ×   

 

16 62.565 10 160.15 10 Pa 160.15 MPa= × = × = . 

Overstress 
[ ]

[ ]
( . ) 160 15 160100% 100% 0.09%

160

III
eq p Cσ σ

∆σ
σ

− × −
= × = × = . 

So, the overstress is within the accepted 5% limit. 
 
(e) selecting the largest pair of dimensions. 
The values of b & h from the three potentially critical points are the following: 

. 0.098 m, 0.196 m,

. 0.084 m, 0.168 m,

. 0.077 m, 0.154 m.

p A b h
p B b h
p C b h

= =
= =
= =

 

We choose the largest values, so 0.098 mb =  and 0.196 mh = . 
 
5. Comparing the rectangle dimensions with the round section diameter. 
(a) the diameter of round solid cross section is 0.16 m . 
(b) the h & b of solid rectangle cross section are 0.196 m, b=0.098 mh = . 
Conclusion: h D>    (0.196 0.16)> . 


