MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE National aerospace university "Kharkiv Aviation Institute" Department of aircraft strength

Course
Mechanics of materials and structures
HOME PROBLEM 14
Generalized Displacements in Two-Supported Beams in Plane Bending

Name of student:
Group:
Advisor:
Data of submission:
Mark:

> National aerospace university
> "Kharkiv Aviation Institute" Department of aircraft strength

Subject: mechanics of materials
Document: home problem
Topic: Generalized Displacements in Two-Supported Beams in Plane Bending. Full name of the student, group

Variant: 110
Complexity: 2

Given: $q=10 \mathrm{kN} / \mathrm{m} ; P=20 \mathrm{kN} ; M=10 \mathrm{kNm} ; E=2 \times 10^{11} \mathrm{~Pa}$; $[\sigma]=160 \mathrm{MPa} ; a=2 \mathrm{~m}$.
Goal:

1) calculate dimensions of the cross-section choosing the one of following: a) diameter of the round solid; b) dimensions of the rectangle ($h / b=2$); c) I-beam number;
2) calculate vertical displacement and the slope in the following points:
$\quad \theta_{A}-? \quad \frac{\theta_{B}-?}{z_{B}-?}$?ull name of the lecturer

$$
\begin{array}{ll}
\theta_{C}-? & \theta_{D}-? \\
z_{D}-?
\end{array}
$$

signature

Mark: \square

						Back cover
						1

Solution

1. Let us write the equations of internal forces in arbitrary sections of given (force) system. Before this, let us find support reactions R_{A} and R_{C} from equilibrium conditions. We will originally direct the reactions downwards. Then
$\sum M_{A}=0=2 R_{C} a+M-F a-q a\left(\frac{a}{2}+a\right)$
$R_{C}=\frac{1}{2 a}\left(F a+q a\left(\frac{a}{2}+a\right)-M\right)=\frac{1}{4}(20 \times 2+20 \times 3-30)=\frac{1}{4}(70)=+17,5 \mathrm{kN}$.
$\sum M_{C}=0=M+F a+q a\left(\frac{a}{2}\right)-2 R_{A} a$,
$R_{A}=\frac{1}{2 a}\left(M+F a+q a\left(\frac{a}{2}\right)\right)=\frac{1}{4}(30+40+20)=+22,5 \mathrm{kN}$.
Checking: $\sum F_{z}=0=R_{A}+R_{C}-q a-F=17,5+22,5-20-20=0$.
Let us divide the force system into parts as shown in Fig. 1 and write equations of shear forces and bending moments for every part:
$\left\{\begin{array}{l}I-I \quad 0<x<a \\ Q_{z F}^{I}(x)=0 \\ M_{y F}^{I}(x)=-M=-30 \mathrm{kNm}\end{array}\right.$
II -II $0<x<a$
$Q_{z F}^{I I}(x)=R_{C}-\left.q x\right|_{x=0}=17,\left.5\right|_{x=2}=-2,5 \kappa \mathrm{H}$
$\left|M_{y F}^{I I}(x)=-M-R_{C} x+\frac{q x^{2}}{2}\right|_{x=0}=-\left.30\right|_{x=2}=-45,31 \kappa \mathrm{H}$
Since the graph of shear force changes its sign within the limits of second portion, bending moment function will have an extremal value:

$$
\begin{aligned}
& Q_{z F}^{I I}\left(x_{e}\right)=R_{C}-q x_{e}=0 \rightarrow x_{e}=\frac{R_{C}}{q}=\frac{17,5}{10}=1,75 \mathrm{~m} . \\
& M_{y F}^{I I}\left(x_{e}\right)=M_{y \max }=-M-R_{c} x_{e}-q\left(x_{e}\right)^{2} / 2= \\
& =-30-17.5 \times 1.75-10 \times(1.75)^{2} / 2=-45.3 \mathrm{kNm} .
\end{aligned}
$$

$$
\text { III - III } \quad 0<x<2
$$

$$
Q_{z F}^{I I I}(x)=-R_{A}=-22,5 \mathrm{kN}
$$

$$
\left|M_{y F}^{I I I}(x)=-R_{A} x\right|_{x=0}=\left.0\right|_{x=2}=-45 \kappa \text { нм }
$$

					3	

2. Design the graphs of shear forces and bending moments for the portions of the force (F) system, also calculate the areas of bending moment graphs ω_{i} and coordinates of their centroids $x_{c_{i}}$ (see Fig. 1).

$$
\begin{aligned}
& \omega_{1}=\int_{0}^{a} M_{y F}^{I}(x) d x=\int_{0}^{a}(-30) d x=-60 \mathrm{kNm}^{2}, \quad x_{c_{1}}=1 \mathrm{~m}, \\
& \omega_{2}=\int_{0}^{a} M_{y F}^{I I}(x) d x=\int_{0}^{a}\left(-M-R_{c} x+\frac{q x^{2}}{2}\right) d x=-\int_{0}^{a} M d x-R_{c} \int_{0}^{a} x d x+ \\
& +\frac{q}{2} \int_{0}^{a} x^{2} d x=-60-17.5 \times \frac{2^{2}}{2}+5 \frac{2^{3}}{3}=-60-35+\frac{40}{3}=-81.67 \mathrm{kNm}^{2} . \\
& \omega_{3}=\int_{0}^{a} M_{y F}^{I I I}(x) d x=\int_{0}^{a}\left(-R_{a} x\right) d x=-R_{a} \int_{0}^{a} x d x=-22.5 \times \frac{2^{2}}{2}=-45 \mathrm{kNm}^{2} .
\end{aligned}
$$

We will define the centroidal coordinate of this area by formula $x_{c_{2}}=S_{z_{2}} / \omega_{2}$, where $S_{z_{2}}$ static moment of area ω_{2}, calculated relatively to z_{2} axis, passing through C point as the origin of second portion.
$S_{z_{2}}=\int_{0}^{2} M_{y}^{I I}(x) x d x=\int_{0}^{a}\left(-M-R_{c} x+\frac{a x^{2}}{2}\right) x d x=$
$=\int_{0}^{a} M x d x-\int_{0}^{a} R_{c} x^{2} d x+\int_{0}^{2} \frac{q x^{3}}{2} d x=-\left.M \frac{x^{2}}{2}\right|_{0} ^{a}-\left.R_{c} \frac{x^{3}}{3}\right|_{0} ^{a}+\left.\frac{q x^{4}}{2 \times 4}\right|_{0} ^{a}=-30 \frac{4}{2}-17.5 \frac{8}{3}+$
$+\frac{5 \times 16}{4}=-60-46.67+20=-86.67 \mathrm{kNm}^{3}$.
Then $x_{c_{2}}=(-86.67) /(-81.67)=1.06 \mathrm{~m}$.
Note. Calculating these areas and coordinates is necessary for further calculation of generalized displacements by Vereshchagin's method.

Conclusion: II - II portion is critical and $\left|M_{y_{\max }}\right|=45.3 \mathrm{kNm}$.
3. Determine the diameter of the circular cross section from the condition of strength:
$\sigma_{\max }=\frac{\left|M_{y_{\max }}\right|}{W_{y}} \leq[\sigma] ; \quad W_{y}=\frac{\left|M_{y_{\max }}\right|}{[\sigma]}=\frac{45.31 \times 10^{3}}{160 \times 10^{6}}=283 \times 10^{-6} \mathrm{~m}^{3}$.
From the other side, $W_{y}=\frac{\pi D^{3}}{32}$, then
$D \geq \sqrt[3]{\frac{32 W_{y}}{\pi}}=\sqrt[3]{\frac{32 \times 283 \times 10^{-6}}{3.14}}=14.23 \mathrm{~cm}$.

						4

Calculate the axial moment of inertia of the cross sections found to determine in future crosssectional flexural rigidity $I E$:
$I_{y}=\frac{\pi D^{4}}{64}=\frac{3.14(0.1423)^{4}}{64}=2011.7 \times 10^{-8} \mathrm{~m}^{4}$.
4. Determine the deflection of D section by the Mohr's energy method. Given beam we will consider as force system (F) and also should design corresponding unit system (1). It is designed on a Fig. 2 by applying unit dimensionless force $\bar{F}=1$ in D point in vertical direction (downwards, for example). It is necessary also to draw its graph of unit bending moments. Preliminary, let us calculate the reactions in supports of unit system $\overline{R_{A}}$ и $\overline{R_{C}}$ from equations of static equilibrium.
$\sum M_{A}=0=\bar{F} \times 3 a-\overline{R_{C}} \times 2 a \rightarrow \overline{R_{C}}=1.5$ (dimensionless)
$\sum M_{C}=0=\bar{F} \times a-\overline{R_{A}} \times 2 a \rightarrow \overline{R_{A}}=0.5$ (dimensionless)
Checking: $\sum F_{z}=0=\overline{R_{C}}-\bar{F}-\overline{R_{A}}=1.5-1-0.5=0$.
By identical dividing both systems onto portions, let us write equations of bending moments in the most simple shape to be suitable for Mohr's integral substituting:
$\left\{\begin{array}{l}I-I \quad 0<x<2 \\ M_{y F}^{I}(x)=-M=-30, \mathrm{kNm}\end{array}\right.$
$\bar{M}_{y}^{I}(x)=-1 \times x, \mathrm{~m}$
II - II $0<x<2$
$M_{y F}^{I I}(x)=-M-R_{C} x+\frac{q x^{2}}{2}=-30-17.5 x+5 x^{2}, \mathrm{kNm}$
$\bar{M}_{y}^{I I}(x)=-\bar{F}(2+x)+\overline{R_{C}} x=-2-x+1.5 x=-2+\frac{1}{2} x, \mathrm{~m}$
III - III $\quad 0<x<2$
$M_{y F}^{I I I}(x)=-R_{A} x=-22.5 x, \mathrm{kNm}$
$\bar{M}_{y}^{I I I}(x)=-\overline{R_{A}} x=-\frac{1}{2} x, \mathrm{~m}$.
Substituting in Mohr's integral and integrating, we obtain:

$$
\begin{aligned}
& z_{D}=\frac{1}{E I_{y}}\left[\int_{0}^{2}(-30)(-x) d x+\int_{0}^{2}\left(-30+17.5 x+5 x^{2}\right)\left(-2+\frac{x}{2}\right) d x+\int_{0}^{2}(-22.5 x)\left(-\frac{x}{2}\right) d x\right]= \\
& =\frac{1}{E I_{y}}\left[30 \times 2^{2}+60 \times 2+35 \times \frac{2^{2}}{2}-10 \times \frac{2^{3}}{3}-15 \times \frac{2^{2}}{2}-\frac{17.5}{2} \times \frac{2^{3}}{3}+\frac{5}{2} \times \frac{2^{4}}{4}+\frac{22.5}{2} \times \frac{2^{3}}{3}\right]= \\
& =+\frac{210}{E I_{y}}, \frac{\mathrm{kNm}^{3}}{E I_{y}} .
\end{aligned}
$$

Substituting parameters of flexural rigidity, we obtain
$z_{D}=+\frac{210 \times 10^{3}}{2 \times 10^{11} \times 2011.7 \times 10^{-8}}=+52.20 \times 10^{-3} \mathrm{~m}=+52.2 \mathrm{~mm}$.
Note, that (+) sign in the solution means, that real direction of point D deflection coincides with the initially selected, i.e. D point moves downwards.

To determine the desired displacement by Vereshchagin's method, we should define on the unit bending moment graph $\bar{M}_{y}(x)$ its three ordinates $\eta_{1}, \eta_{2}, \eta_{3}$, in the cross-sections with coordinates $x_{c_{1}}, x_{c_{2}}, x_{c_{3}}$, i.e. under $M_{y F}(x)$ graphs centroids. First and third of them, i.e. $x_{c_{1}}$ and $x_{c_{3}}$ are easy to define: since $x_{c_{1}}=1 \mathrm{~m}$, we have $\left|\eta_{1}\right|=\frac{1}{2} \times 2=1 \mathrm{~m}$ (see. Fig. 1). It also evident that for triangle with ω_{3} area $\left|\eta_{3}\right|=\frac{2}{3} \times 2=1.33 \mathrm{~m}$.
To find η_{2} ordinate the ω_{2} centroid should be used, i.e. $x_{c_{2}}=1.06 \mathrm{~m}$. Also, similarity of triangles arising from Fig. 2 is used to find η_{2} ordinate:
$\frac{2}{4}=\frac{\left|\eta_{2}\right|}{4-1.06}$, and $\left|\eta_{2}\right|=\frac{1}{2}(4-1.06)=1.47 \mathrm{~m}$.

Fig. 2
Thus, the desired deflection
$z_{D}=\frac{1}{E I_{y}}\left[\left(\omega_{1} \eta_{1}+\omega_{2} \eta_{2}+\omega_{3} \eta_{3}\right)\right]=$
$=\frac{1}{E I_{y}}\left[(-60)(-1)+(-81.67)(-1.47)+(-45)\left(-\frac{2}{3} \times 1\right)\right]=+\frac{210.2}{E I_{y}}, \frac{\mathrm{kNm}^{3}}{E I_{y}}$.
Substituting the parameters of flexural rigidity $E I_{y}$, we obtain $z_{D}=+\frac{210.2 \times 10^{3}}{2 \times 10^{11} \times 2011.7 \times 10^{-8}}=+52.24 \times 10^{-3} \mathrm{~m}=+52.24 \mathrm{~mm}$.
Conclusion. This result coincides with Mohr's method solution.

					6	

