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Given: 10q   кН/m, 

20F   kN, М=30kNm, 

2a   m, 112 10E    Pa 

  100   MPa. 

 

It is necessary: 

1) To determine the diameter of 

the circular cross-section; 

2) To calculate the vertical 

displacement (deflection) of the 

D section. 

 

Note: to solve the problem by 

Mohr’s energy method and 

Vereshchagin's graphical 

method 

 

In a plane bending, the Mohr’s 

integral is: 
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  , 

where ( )уFM x  – bending 

moment in an arbitrary section 

of the force system (F), 

( )yM x  – bending moment in 

an arbitrary section of the unit 

system (1); 

yEI  – flexural rigidity. 

Vereshchagin's formula is: 
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 , where i  – area 

of the bending moment graph 

part for the force system; i  – 

ordinate of unit diagram under 

centroid of force system 

bending moment graph. 

 

 

 

 

 

 

 

 
Fig. 1 
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Solution 

 

1. Let us write the equations of internal forces in arbitrary sections of given (force) system. 

Before this, let us find support reactions AR  and CR  from equilibrium conditions. We will 

originally direct the reactions downwards. Then 
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Checking: 0 17,5 22,5 20 20 0z A CF R R qa F          . 

 

Let us divide the force system into parts as shown in Fig. 1 and write equations of shear 

forces and bending moments for every part: 
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Since the graph of shear force changes its sign within the limits of second portion, bending 

moment function will have an extremal value: 
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2. Design the graphs of shear forces and bending moments for the portions of the force (F) 

system, also calculate the areаs of bending moment graphs i  and coordinates of their 

centroids 
icx  (see Fig. 1). 
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We will define the centroidal coordinate of this area by formula 
2 2 2/c zx S  , where 

2z
S  – 

static moment of area 2 , calculated relatively to 2z  axis, passing through C point as the 

origin of second portion. 
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       . 

 

Then    
2

86.67 / 81.67 1.06cx      m. 

 

Note. Calculating these areas and coordinates is necessary for further calculation of 

generalized displacements by Vereshchagin's method. 
 

Conclusion: II II  portion is critical and 
max

45.3yM   kNm. 

 

3. Determine the diameter of the circular cross section from the condition of strength: 
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Calculate the axial moment of inertia of the cross sections found to determine in future cross-

sectional flexural rigidity IE : 
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4. Determine the deflection of D section by the Mohr’s energy method. Given beam we will 

consider as force system  F  and also should design corresponding unit system (1). It is 

designed on a Fig. 2 by applying unit dimensionless force 1F   in D point in vertical 

direction (downwards, for example). It is necessary also to draw its graph of unit bending 

moments. Preliminary, let us calculate the reactions in supports of unit system AR  и CR  

from equations of static equilibrium. 

0 3 2 1.5A C CM F a R a R        (dimensionless) 

0 2 0.5C A AM F a R a R        (dimensionless) 
 

Checking: 0 1.5 1 0.5 0z C AF R F R        . 
 

By identical dividing both systems onto portions, let us write equations of bending moments 

in the most simple shape to be suitable for Mohr’s integral substituting: 
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Substituting in Mohr’s integral and integrating, we obtain: 
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Substituting parameters of flexural rigidity, we obtain 
3

3
11 8

210 10
52.20 10

2 10 2011.7 10
Dz 




    

  
 m=+52.2mm. 

 

Note, that (+) sign in the solution means, that real direction of point D deflection 

coincides with the initially selected, i.е. D point moves downwards. 

 To determine the desired displacement by Vereshchagin's method, we should define on 

the unit bending moment graph ( )yM x  its three ordinates 1 2 3, ,   , in the cross-sections 

with coordinates 
1c

x , 
2cx , 

3c
x , i.e. under ( )yFM x  graphs centroids. First and third of them, 

i.е. 
1c

x  and 
3c

x  are easy to define: since 
1

1mcx  , we have 1
1

2 1m
2

     (see. Fig. 1). It 

also evident that for triangle with 3  area 3
2

2 1.33
3

     m. 

To find 2  ordinate the 2  centroid should be used, i.е. 
2

1.06cx   m. Also, similarity of 

triangles arising from Fig. 2 is used to find 2  ordinate: 
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, and  2

1
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2
    m. 

 
Fig. 2 

Thus, the desired deflection 
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3kNm

yEI
. 

 

Substituting the parameters of flexural rigidity yEI , we obtain 

3
3

11 8

210.2 10
52.24 10

2 10 2011.7 10
Dz 




    

  
 m = +52.24 mm. 

Conclusion. This result coincides with Mohr's method solution. 
 


