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Given: two-span beam (see back of cover and Fig. 1), 10kNmM  , 20kN/mq  , 

3ma  , 2mb  , 2mc  , 1md  . 

It is necessary: 

1) open static indeterminacy using three moment equations and design  yM x  and 

 zQ x  diagrams; 

2) open static indeterminacy using force method and design  yM x  and  zQ x  

diagrams; 

3) compare the results. 

 

Solution: 

(A) Application of the equation of three moments. 
(1) First of all we determine the degree of static indeterminacy according to the 

formula  

k m n  , 

where k  is the degree of static indeterminacy, m  is the number of unknown reactions, n  

is the number of equations of static equilibrium. So, 4; 3m n   and 1k  . The fact of the 

beam being singly statically indeterminate gets obvious. 

(2)   Designing the equivalent system (see Fig. 1). It is developed by introducing 

virtual hinge into mid support cross section and adding into it unknown internal bending 

moment 1 1M X . Also, internal bending moments in left and right supports are 

represented in equivalent system by two concentrated moments 0M  and 2M . They are 

calculated by applying the method of sections using sign conventions shown on Fig. 2.  

 

 
 

Fig. 1 

 

Note, that the moments 0M , 1M , 2M  are applied in their positive directions 

according to the sign conventions, shown on Figs. 2, 3. 
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Sign conventions: 

а) for shear forces    b) for bending moments  

 

 
 

 

 

 

 

 

 

 
 

Fig. 2           Fig. 3 
 

The values of the moments 0 2,M M  are the following: 

2

0 2
2

60 kNm, 10 kNm
2 3 2

qa qd
M a M        . 

(3)   Calculating the unknown bending moment 1M  from the equation of three 

moments. 

In general, the equation of three moments looks like: 

   0 1 1 1 2 2 22 6M l M l l M l EI        , 

where 1l and 2l  are the lengths of the left and right span respectively, 0M  is internal 

moment in cross-section of left support, 1M  – unknown internal moment in cross-section 

of middle support, 2M  is internal moment in cross-section of right support. 

We have already defined the values of 0M  and 2M . For our case, 1l  and 2l  are 

correspondingly the lengths of left and right spans which are equal to 2b   m and 

2c   m. The angles ,   are really the slopes which are generated by only external forces 

and moments applied correspondingly to the left and right span:   – angle in right support 

of left span and   – in left support of right span. Note, that external forces and 

moments which were earlier included into 0,M  2M  calculating, should not be 

included into ,   calculating. Left and right spans are shown on Figs 4 and 5 with 

corresponding shapes of deflected curve under loading mentioned above. Due to the M 

external moment is applied in midsection, it may be considered as the deflection generator 

of left or right span, depending on our wish. It this solution, we will assume the M moment 

be applied to left span. Note also, that the angles corresponding to convex deflection 

are assumed to be positive in three moment equation and vice versa. 

 

 

 

Fig. 4 Fig. 5 

 

0m m
yM  0m m

zQ   0m m
yM  0m m

zQ  
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(a) Let us define the   and   angles using well-known formula from teaching aids: 

20
0

3 3

Mb

EI EI
          

2kNm

EI

 
 
  

.  

Note, that 0   due to concave shape of left span deflection curve which is assumed 

to be negative in proving three moment equation. Due to this assumption   angle will also 

be negative: 

0        
3 20

24 3

qc

EI EI
      

2kNm

EI

 
 
  

. 

(b) Let us define the   and   angles using Mohr’s method. For this purpose, we will 

consider the left and right spans under external loadings as the force systems (F) and will 

design two corresponding unit systems applying unit dimensionless moment 1M   in 

right support of the left span (to calculate   angle) and unit dimensionless moment 1M   

in left support of the right span (to calculate   angle). Note, that unit moments are 

applied in arbitrary directions and results of calculation may be positive or negative 

depending on the 1M   direction. 

 

  
Fig. 6 Fig. 7 

 

Calculating the reactions in the unit systems (clockwise rotation is assumed to be 

positive):  

left span      0 1/ 0.5 m, 0.5 mB A A B AM R b M R b R R          , 

right span    0 1/ 0.5 m, 0.5 mB C C B CM R c M R c R R         . 
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Calculating the reactions in the force systems: 

left span       0 / 10/2 5 kN, 5 kNB A A BM R b M R M b R            , 

right span     20 /2 20 kN, 20 kNB C m C B CM R c q c R R R          . 

 

Equations of bending moments are the following: 

left span     5I
yF AM x R x x    , 

                   0.5
I
y AM x R x x  . 

        

right span   2 2/ 2 (10 20 )I
yF BM x qx R x x x    , 

           1 0.5
I
y BM x M R x x      . 

Results of the Mohr’s method calculations are: 

  
3

0

1 1 20
5 0.5 2.5

3 3

b b
x x dx

EI EI EI


 
       
     
 , 

  2
0

1 20
10 20 1 0.5

3

c
x x x dx

EI EI
       

  
 . 

Taking into account the notations mentioned above, negative values of these angles, 

i.e. 
20

3EI
    and 

20

3EI
    are substituted into three moment equation: 

     1
20 20

60 2 2 2 2 10 2 6 .
3 3

M EI
EI EI

 
           

 
 

After substituting we obtain the result: 1 22.5 kNmM   . It means that static 

indeterminacy of specified beam is opened and it is possible to determine the internal 

forces in equivalent system shown on Fig. 1. Note, that in the case of negative 1M  value 

it should be applied to both spans of equivalent system in opposite directions. 
 

(4)   Considering the left and right spans separately and constructing the internal 

force factors diagrams for each of them. The spans are shown on Figs. 8 and 9. 

 

(a) left span (see Fig. 8). Note, that clockwise rotation is assumed to be positive in 

the reactions calculating. 

1
2

0: 0.
2 3 orig

m
B A

q a
M a b R b M M

 
       

 
  

1
1 2 1 30 2 2

22.5 10 2 2 66.25 kN
2 3 2 2 3orig

m
A

q a
R M M a b

b

       
                

      

(actual direction upwards). 
2

10: 0
3 orig

m
A B

q a
M R b M M      . 
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Fig. 8       Fig. 9 
 

2

1
1 1 30 4

22.5 10 36.25 kN
3 2 2orig

m
B

q a
R M M

b


   
              

  

(actual direction downwards). 
 

Checking: 

20 3
0: 0 66.25 36.25 0

2 2orig orig

m
z A B

q a
F R R


          . 

Equations of internal forces are the following: 

1 0 2

: 0

( ) 36.25 kN,

( ) | 12.5 | 60 kNm.

orig

orig

I
z B

I
y B x x

I I x b

Q x R

M x R x M M  

  

  

      

 

 

2

0

3

1 0

: 0

( ) | 30 | 0,
2

( ) | 60 | 0.
6

orig orig

orig orig

II m
z B A x x a

II
y B A x x a

II II x a

q x
Q x R R

a
qx

M x R x b M M R x
a

 

 

  

     

         
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(b) right span (see Fig. 9). Note, that clockwise rotation is assumed to be positive 

in the reactions calculating. 
2 2

10: 0.
2 2 orig

m m
c B

q d q c
M R c M       

2 2

1
1 1 20 1 20 4

22.5 26.25 kN
2 2 2 2 2orig

m m
B

q d q c
R M

c

    
                

  

(actual direction downwards). 

 
2

10: 0
2orig

m
B C

q
M R c M c d       . 

   
2 2

1
1 1 20

22.5 2 1 33.75 kN
2 2 2orig

m
C

q
R M c d

c

   
         

  
 

(actual direction downwards). 

Checking: 

 0: 0 60 33.75 26.25 0
act actz C BF q c d R R           . 

Equations of internal forces are the following: 

0

: 0

( ) | 0 | 20(kN),I
z m x x d

I I x d

Q x q x  

  

    
 

2

0( ) | 0 | 10(kNm).
2

I m
y x x d

q x
M x      

0

: 0

( ) | 26.25 | 13.75 kN,
act

II
z B m x x c

II II x c

Q x R q x  

  

     
 

2

1 0( ) | 22.5 | 10 kNm
2act

II m
y B x x c

q x
M x M R x       . 

 

Extremal bending moment calculating: 

26.25
( ) 0 1.31m.

20

act

act

BII
z e B e e

m

R
Q x R qx x

q


         

max

2
2

1( ) 10 26.25 1.31 20 1.31 / 2 3.34(kNm).
2act

II II m e
y e B ey

q x
M x M M R x          

By connecting the graphs of internal forces for two spans we get the solution of the 

problem shown on Fig. 10. 

(B) Solution by the force method.  

First of all let us choose the base system (BS) and design corresponding equivalent 

system (ES) (see Fig. 11). Designing correspondent equivalent system is also shown on 

Fig. 11. The effect of middle support is replaced in equivalent system by unknown 

reaction (force) 1X . Its value must be found using the equation of deflection compatibility, 

which is represented as canonical equation of the force method. Their geometrical sense 

is in total zero vertical deflection of vertically immobile B point of equivalent system. This 

deflection is really a geometric sum of the B-point deflection generated by external forces 

and, secondly, by unknown 1X  force. This canonical equation has the shape: 

 
. 1, 0

p Bvert X F     or   11 1 0IFX   . 

 



 

 9 

 
 

Fig. 10 
 

To find two coefficients 11  and 1F  it is necessary to design the force (F) and unit 

(1) systems. They are shown on Fig. 11. Note, that the force system is the base system 

with only external forces applied. Unit system is the base system with unit 1X  force 

applied. They are shown on Fig. 11. 

The unknown reactions AR  and CR  in the force system (F) we will calculate using 

the equations of statics: 

   
2

0
2 3 2

m
A C m

q a c d
M a M R b c q c d b

 
          

 
 . 

21 1 20 9 3
( ) 10 20 3 2 65 kN

3 2 4 3 2

m
C m

q a c d
R M q c d b

b c

       
                       

(actual direction downwards). 

 
2 22

0
2 3 2 2

m m m
C A

q a q c q d
M a b c M R b c

 
           

 
 .  
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2 21 2

2 3 2 2

1 20 9 2 20 4 20 1
3 2 2 10 35 kN

4 2 3 2 2

m m m
A

q a q c q d
R a b c M

b c

  
            
     

          
  

 

(actual direction upwards). 

Checking:    
20 3

0 20 2 1 35 65 0.
2 2

m
z m A C

q a
F q c d R R


             

 

The unknown reactions AR  and cR  in the unit system (1) we will also calculate 

using the equations of statics: 

   1
1

0 0 dimensionless
2

CA CM R b c X b R          

(actual direction upwards).  

   1
1

0 0 dimensionless
2

AC AM R b c X c R          

(actual direction upwards).  

Checking: 1
1 1

0 1 0.
2 2

A CzF R R X         

Equations of internal forces in the force and unit systems are the following: 
: 0I I x d    

   
2

210
2

I m
yF

q x
M x x  , 

  0I
yM x  . 

: 0II II x c    

   
2

210 45 10
2 2

II m
yF m C

q xd
M x q d x R x x x

 
       

 
, 

  .
2

II
y

x
M x

 
  
 

 

: 0III III x b    

    ( 50 5 )
2 2

III
yF m m C

d c
M x q d c x q c x R c x M x

   
             

   
, 

  1
2

III
y

x
M x

 
   
 

. 

: 0IV IV x a    

 
3

3

2 2 6
10

30 60 ,
9

IV m
yF m m C A

q xd c
M q d c b x q c b x R c b x M R x

a

x x

   
                

   
 

    
 

 

  0IV
yM x  . 

 

 



 

 11 

Calculating the canonical equation coefficients applying Mohr's method. 

      

 

1 2 2
2 2

0 0 0
3

3

0

1
10 0 10 45 10 50 5 1

2 2

10 250
30 80 0 .

9 3

IF
x x

x dx x x x dx
EI

x x dx
EI


    

              
   

 
     
  

  



 

 

     
1 2 2 3

11

0 0 0 0

1 4
0 0 1 1 0 0

2 2 2 2 3

x x x x
dx dx dx dx

EI EI


      
                 

       
    . 

Note, that 11  coefficient may be also calculated applying graphical method. 

Substituting these coefficients into canonical equation is the following: 

 1
4 250

0
3 3

X
EI EI

       and    1 62.5X    kN. 

Note, that "minus sign" means that actual direction of 1X  force is opposite to its 

upwards original direction in equivalent system (see Fig. 11c).  

 After 1X  finding the equivalent system becomes available for shear forces and 

bending moments calculating. Let us preliminary determine the reactions *
AR  and *

CR  in 

equivalent system. Their original directions are shown on Fig. 11. Note, that original 

direction of 1X  in equivalent system should be changed on opposite before these 

calculating. 
 

   *
1

2
0

2 2 3orig

m
A m C

q ac d a
M X b M q c d b R b c

 
           

 
 . 

 *
1

1 2
33.75

2 2 3orig

m
C m

q ac d a
R X b M q c d b

b c

   
           

   
 kN  

(actual direction downwards). 

 
2 2

*
1

2
0 .

2 3 2 2orig

m m m
C A

q a q c q da
M X c M R b c b c

 
           

 
  

2 2
*

1
1 2

66.25 kN
2 3 2 2orig

m m m
A

q a q c q da
R X c M b c

b c

  
              

 

(actual direction upwards). 

Checking: 

 * *
10 62.5 33.75 30 66.25 60 0

2act origz C A
qa

F X R R q c d             . 

Equations of internal forces in equivalent system are the following: 
: 0I I x d    

 
0 1

20 0 20I
z m x x

Q x q x x
 

        kN, 

 
2

2
10

10 0 10
2

I m
y xx

q x
M x x


      kNm. 

: 0II II x c    
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     * 20 1 33.75
act

II
z m CQ x q x d R x          

  20
20 13.75 13.75 26.25

xx
x


        kN, 

   
  *

2 act

II
y m C

d x
M x q d x R x


      

 2
2

0
10 13.75 10 10 22.5

x
x

x x



        kNm. 

Due to  II
zQ x  function changes its sign from "plus" to "minus" it is necessary to 

find  II
yM x  extremal value: 

(a) extremum coordinate finding by equating to zero  II
zQ x  function: 

   
13.75

20 13.75 0 0.69
20

II
z e e eQ x x x         m. 

(b) calculating max
II
yM  value substituting ex  value into  II

yM x  equation: 

   
max

210 13.75 10 3.34II II
y e e ey

M x M x x       kNm. 

 

: 0III III x b    

   *
1 36.25

act

III
z C mQ x R q c d X       kN, 

     *
1

2act

III
y C m

c d
M x R c x M X x q c d x

 
         

 
 

  20
12.5 36.25 12.5 60

xx
x


      kNm. 

 

: 0IV IV x a    

 
2

* * 2
1 3

0

10
( ) 30 30 0

2 3act orig

IV m
z C m A x

x

q x
Q x R q c d X R x

a 


 
           

 
kN 

     *

2act

IV
y C m

c d
M x R c b x q c d b x M

 
          

 
 

 
3

* 3
1 3

0

10
30 60 60 0

6 9orig

m
A x

x

q x
X b x R x x x

a 


 
           

 
 kNm. 

The  zQ x  and  yM x  graphs are represented on Fig. 11 (f, g). 

General conclusion. Due to 1X  force is really the reaction in middle support, it may 

be compared with the “abrupt” on the shear force graph, designed in result of first solution 

applying three moment equation. This “abrupt” is equal to (36.25 26.25 62.5  kN). It’s 

coincidence with the value of 1X  force supports the accuracy of this problem solution. 

The “abrupt” on the  yM x  graph in B-point is equal to external M value 10 kNm 

and internal moment in B section (equal to 22.5 kNm) is really unknown 1M  moment 

which has been found earlier in three moment equation.  

Totally, the graphs of  zQ x  and  yM x  shown on the Figs. 10 and 11 are identical. 
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Fig. 11 

 


